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Abstract

Estimation of Distribution Algorithms (EDAs)
is a new area of Evolutionary Computation. In
EDAs there is neither crossover nor mutation
operators. New population is generated by
sampling the probability distribution, which is
estimated from a database containing selected
individuals of the previous generation. Different
approaches have been proposed for the estimation
of probability distribution. In this paper we
provide a review of different EDA approaches
and show how to apply UMDA with Laplace
correction to Subset Sum, OneMax function and
n-Queen problems of linear and combinatorial
optimizations. The experimental results of the
three problems comparing the performance of
UMDA with that of Genetic Algorithm(GA) are
provided. In our experiment UMDA outperforms
GA for linear problems.

Key Words: EDA (Estimation of Distribu-
tion Algorithm), Laplace correction, Subset Sum
problem, OneMax function, n-Queen problem

1 Introduction

Genetic Algorithms (GAs) are optimization tech-
niques based on selection and recombination of
promising solutions. The collection of candidate
solutions is called populations of Genetic Algo-
rithms whereas candidate solutions are sometimes
named as Individuals, Chromosomes etc. Each
individual is an encoded representation of vari-
ables of the problems at hand. Each component
(variable) in an individual is termed as Gene.
Sometimes the components (genes) are indepen-
dent of one another and sometimes they corre-
lated. But always a communication and informa-
tion exchange among individuals in a population
is maintained through the selection and recom-

bination operator of Genetic Algorithms. This
kind of exchange helps to combine partial solu-
tions (individuals) to generate high quality partial
solutions—Building Blocks (BBs)[11][12]. The be-
havior of the GAs depends on the choice of the
genetic operators: selection, crossover, mutation,
probabilities of crossover and mutation, popula-
tion size, rate of generational reproduction, num-
ber of generations etc. But seldom the problem
specific interactions among the variables are con-
sidered. As a result, the fixed two parents recom-
bination and evolution sometimes provide inferior
quality of solution converging to a local optimum.
To avoid the disruption of partial solutions, the
two parents recombination processes can been re-
placed by generating new solutions according to
the probability distribution of all promising solu-
tions of the previous generation. This new ap-
proach is called Estimation of Distribution Algo-
rithm (EDA). EDAs were introduced in the field
of Evolutionary Computation for the first time by
[19].

2 Estimation of Distribution
Algorithm(EDA)

In EDAs the problem specific interactions among
the variables of individuals are taken into consid-
eration. In Evolutionary Computations the in-
teractions are kept implicitly in mind whereas in
EDAs the interrelations are expressed explicitly
through the joint probability distribution associ-
ated with the individuals of variables selected at
each generation. The probability distribution is
calculated from a database of selected individuals
of previous generation.Then sampling this prob-
ability distribution generates offspring. Neither
crossover nor mutation has been applied in EDAs.
But the estimation of the joint probability dis-
tribution associated with the database containing



the selected individuals is not an easy task.The
flow chart of EDA is show in the figure 1.
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Figure 1: EDA flowchart

3 Different EDA approaches

3.1 Independent Variables

The easiest way to calculate the estimation of
probability distribution is to consider all the vari-
ables in a problem as univariate. Then the
joint probability distribution becomes the prod-
uct of the marginal probabilities of n variables,i.e.,
pl(x) =

∏n

i=1 p(xi). Univariate Marginal Distri-
bution Algorithm (UMDA) [16], Population Based
Incremental Learning (PBIL) [1][2] and Compact
Genetic Algorithm (CGA) [10] consider no inter-
action among variables.

In UMDAs the joint probability distribution is
factorized as a product of independent univari-
ate marginal distribution, which is estimated from
marginal frequencies:

pl(xi) =

∑N

j=1 δj(Xi = xi|D
Se
i−1)

N
(1)

where δj(Xi = xi|D
Se
l−1) = 1 if in jth individual Xi

has its ith value; otherwise it is zero.There is the-
oretical evidence that UMDA approximates the
behavior of the Simple Genetic Algorithm (SGA)
with uniform crossover [17].

In PBILs the population of individuals is rep-
resented by a vector of probabilities: pl(x) =
(pl(x1), . . . , pl(xi), . . . , pl(xn)) where pl(xi) refers
to the probability of obtaining a 1 in the ith com-
ponent of Dl, the population of individuals in the
lth generation. At each generation M individuals
are generated by sampling pl(x) and the best N
individuals are selected. The selected individu-
als are used to update the probability vector by a
Hebbian inspired rule:

pl+1(xi) = (1− α)pl(xi) + α
1

N

N∑

k=1

xl
i,k:M (2)

where α ∈ (0, 1] and xl
i,k:M represents the value

of xi at kth selected individual.The update rule
shifts the vector towards the best of generated in-
dividuals.

In CGAs the vector of probabilities is initial-
ized with probability of each variable 0.5. Then
two individuals are generated randomly by using
this vector of probabilities and rank them by eval-
uating. Then the probability vector pl(x) is up-
dated towards the best one.This process of adap-
tation continues until the vector of probabilities
converges.

All the above mentioned algorithms provide
better results for problems of having no signifi-
cant interaction among variables [16][10][21] but
for higher order interaction it cannot provide bet-
ter results.

3.2 Bivariate Dependencies

To solve the problem of pairwise interaction
among variables population based Mutual In-
formation Maximization for Input Clustering
(MIMIC) Algorithm [7], Combining Optimiz-
ers with Mutual Information Tress (COMIT)
[3], Bivariate Marginal Distribution Algorithm
(BMDA)[21] were introduced. Where there is at
most two-order dependency among variables these
provide better result that is far away from the real
world where multiple interactions occur.

3.3 Multiple Dependencies

Factorized Distribution Algorithm (FDA)[18], Ex-
tended Compact Genetic Algorithm (ECGA)[9],
Bayesian Optimization Algorithm (BOA)[20],
Estimation of Bayesian Networks Algorithm
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(EBNA)[15] can capture the multiple dependen-
cies among variables.

FDA uses a fixed factorization of the distri-
bution of the uniformly scaled additively decom-
posed function to generate new individuals. It
efficiently optimizes a class of binary functions,
which are too difficult for traditional GAs. FDA
incrementally computes Boltzmann distributions
by using Boltzmann selection. FDA converges in
polynomial time if the search distribution can be
formed so that the number of parameters used is
polynomially bounded in n. But the problem of
FDA is the requirement of fixed distributions and
additively decomposed functions.

BOA uses the techniques from modeling data
by Bayesian Networks to estimate the joint prob-
ability distributions of selected individuals. Then
new population is generated based on this estima-
tion. It uses the BD(Bayesian Dirichlet) metric
to measure the goodness of each structure. This
Bayesian metric has the property that the scores
of two structures that reflect the same conditional
dependency or independency are the same. In
BOA prior information about the problem can be
incorporated to enhance the estimation and better
convergence [20]. In order to reduce the cardinal-
ity of search space BOA imposes restriction on the
number of parents a node may have. For the prob-
lems where a node may have more than 2 parents,
the situation is complicated to solve.

In ECGA the factorization of the joint probabil-
ity is calculated as a product of marginal distribu-
tion of variable size. These marginal distributions
of variable size are related to the variables that are
contained in the same group and to the probability
distribution associated with them. The grouping
is carried out by using a greedy forward algorithm
that obtains a partition among the n variables.
Each group of variables is assumed to be indepen-
dent of the rest. So the factorization of the joint
probability on n variables is: pl(x) =

∏
c∈Cl

pl(xc)

where Cl denotes the set of groups in the lth gener-
ation and pl(xc) represents the marginal distribu-
tion of the variables Xc-the variables that belong
to the cth group in the lth generation. ECGA uses
model complexity and population complexity to
measure the quality of the marginal distribution.
It can cover any number of interactions among
variables but the problem is, it does not consider
conditional probabilities which is insufficient for
highly overlapping cases.

In EBNA the joint probability distribution en-
coded by a Bayesian Network is learnt from the
database containing the selected individuals in
each generation. The factorization can be writ-

ten as

pl(x) =

n∏

i=1

p(xi|pa
l
i)

where pal
i is the set of parents of the vari-

able Xi. Different algorithms can be obtained
by varying the structural search method. Two
structural search methods are usually consid-
ered: score+search and detecting conditional
(in) dependencies (EBNAPC). Particularly two
scores are used in the score+search approarch:
the Bayesian Information Criterion (BIC) score
(EBNABIC) and the K2+penalization score
(EBNAK2+pen). In each case the convergence is
only affected by the calculus of the parameters θijk

, where θijk represents the conditional probability
of variable Xi being in its kth value while the set
of its parent at jth value. The parameter of the
local probability distribution can be calculated for
every generation by using either:
their expected values as obtained by K2 score [5]
for their score:

E[θijk|D
Se
l−1] =

Nijk + 1

Nij + ri

or maximum likelihood estimates

θ̂ijk =
Nijk

Nij

where Nijk denotes the number of cases in the se-
lected individuals in which the variables Xi takes
the kth value and its parents pai takes jth value
and Nij =

∑ri

k=1 Nijk [where ri is the number of
different values Xi may take ].For the case of ex-
pected values when the selection is elitist EBNAs
converge to a population that contains the global
optimum whereas for maximum likelihood case it
is not guaranteed [8]

4 Convergence of UMDA by
Laplace correction

[8] has shown that some instances with pl(x) ≥
δ > 0 visits populations of D∗ which contains
global optimum infinitely with probability 1 and
if the selection is elitist, then UMDA may con-
verge to a population that contains the global op-
timum. But the joint probability distribution of
UMDA can be zero for some x; for example, when
the selected individuals at the previous steps are
such that ∃j,

∑N

j=1 δj(Xi = xi|D
Se
l−1) = 0. Hence

the joint probability distribution pl(x) = 0. So
UMDA sometimes may not visit a global optimum
[8]. To overcome this problem the way of calcu-
lating the probabilities should be changed. One
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possible solution is to apply Laplace correction [4].
Now

p(Xi = xi|D
Se
l−1) =

∑N

j=1 δj(Xi = xi|D
Se
l−1) + 1

N + ri

(3)
where ri is the number of different values Xi may
take.

5 Some Solutions by UMDA

Here we have applied Univariate Marginal Dis-
tribution Algorithm to three well-known prob-
lems: Subset Sum problem,OneMax function and
n-Queen problem. The Subset Sum and OneMax
are linear problems whereas n-Queen is a combi-
natorial problem.

5.1 Subset Sum Problem

It is the problem of finding what subset of a list
of integers has a given sum. The subset sum is
an integer relation problem where the relation co-
efficients are either 0 or 1.If there are n integers,
the solution space is 2n which is the number of
subsets for n variables. For small n exact solu-
tions can be found by dynamic programming but
for larger n state space tree grows exponentially.
It is an NP-Complete problem.

5.1.1 Solving Subset Sum problem by

UMDA

In UMDA each individual (solution) is represented
by an n-tuple (x1, x2, x3, . . . , xn) such that xi ∈
{0, 1} and 1 ≤ i ≤ n. Then xi = 0 if ith integer is
not selected and xi = 1 if selected. Each individ-
ual is evaluated by finding the difference between
the expected sum and the sum of the selected in-
tegers in the individual. The smaller difference
is the better. Marginal probability distribution
is calculated from the best half of the population
with Laplace correction and new individuals are
generated by sampling this. During replacement
we have used elitism. The algorithm terminates
when the evaluation of the best individual of a
population is zero.

5.1.2 Solving Subset Sum problem by Ge-

netic Algorithm

Using same representation, initialization, evalua-
tion and replacement strategy as those of UMDA
we apply GA to the problem. We use simple one
point crossover and mutation for generation of off-
spring. Parents have been selected randomly for
crossover.

5.2 OneMax function by UMDA
and GA

OneMax function returns the number of ones in
an input string, i.e. fOneMax(x) =

∑n

i=1 xi,
where x = {x1, x2, . . . , xn} and x ∈ {0, 1}. It
is a unimodal function which has optimum in
xOpt = {1, 1, . . . , 1}. It is a trivial function which
is used a test function for the evaluation of per-
formance of Genetic Algorithms and EDAs.With
Laplace correction it is guaranteed that UMDA
will find optimum value within a small number
of generations. In our experiment we have initial-
ized population randomly, selected best half of the
population for calculation of probability distribu-
tion.And for GA we have used onepoint crossover
and mutation.The replacement strategy for both
cases is elitism.

5.3 n-Queen problem

n-queen problem is a classic combinatorial opti-
mization problem. The task is to place n-queen
on an n × n chessboard so that no two queens
attack each other; that is, no two queens are on
the same row, column, or diagonal. Let us num-
ber the rows and columns of the chessboard 1
through N and so the queens. Since each queen
must be placed on a different row, we can assume
that queen i is to be placed on row i. Let the
solution be x = {x1, x2, . . . , xn} where xi repre-
sents the column position in row i where queen
i can be placed. As all queens must be on dif-
ferent columns, all xis must be different. So the
solution will be a permutation of the numbers 1
through n and the solution space is drastically re-
duced to n!. We can easily fulfill the first two
constraints—no two queens on the same row or
column by allowing distinct value for each xi. But
how to test whether two queens at positions (i, j)
and (k, l)[i = row, j = column] are on the same
diagonal or not? If abs(j− l) = abs(i−k), the two
queens are on the same diagonal. So the pseu-
docode for the testing of the constraints for the
queens at position xi and xj is:
If ((xi = xj) OR (abs(i− j) = abs(xi − xj))

return NOT FEASIBLE;

But this testing requires n(n−1)
2 comparisons to

calculate the fitness of an individual.

5.3.1 Solving n-Queen by UMDA

With UMDA the individual in a population is
represented as {x1, x2, . . . , xn} where each xi rep-
resents the column at row i where ith queen is
placed. The fitness of individual is calculated as
the number of queens at non-attacking positions.
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The initial population of size M is generated
randomly with the constraint that all values in
an individual are distinct numbers of the set
1, 2, . . . , n. By doing this we have implicitly sat-
isfied the constraint that no two queens are on
the same row or column. Then, fitness calculation
is just to check whether two queens are on the
same diagonal or not. In each generation the best
half of the individuals of the previous generation
are selected for the calculation of joint probabil-
ity distribution using marginal frequencies of each
xi. During calculation of marginal distribution of
each variable Laplace correction has been used.
By applying Laplace correction we have ensured
that the probability of any variable will be greater
than zero and hence increase the joint probability
distribution. Then M new individuals are gener-
ated.

During generation of each individual we have
applied probabilistic modification to enforce the
first constraint of n-Queen. In probabilistic mod-
ification when some variables have been selected
their probabilities for the next turn have been zero
and the probability of non selected variables are
increased proportionately. Consider the example
in the table 1 . If x1 is selected for the first po-

Before Selection After Selection
Position/
variables 1 2 3 1 2 3
x1 0.7 0.1 0.5 0.7 0 0
x2 0.1 0.6 0.1 0.1 0.65 0.35
x3 0.2 0.3 0.4 0.1 0.35 0.65

Table 1: Example of probabilistic modification

sition then the probability of x1 for 2nd and 3rd
position should be zero and the probabilities of
x2 and x3 will increase proportionally. The tem-
porary table should look like the one at the right
above. By doing this we can ensure that distinct
value will be generated for each component of an
individual if Roulette Wheel selection is used.

For replacement strategy we have use elitism.
The algorithm stops when fitness of the best indi-
vidual is n; that is, all queens are at non-attacking
position or certain number of generations have
passed.

Fitness improvement heuristics can be applied
to the problem and performs much better than
blind search using UMDA. For combinatorial opti-
mization 2-opt [6] algorithm or Partially Matched
Crossover (PMX) [13] is widely used. I have used
2-opt algorithm as local heuristic.

5.3.2 n-Queen by Genetic Algorithm

Using same representation, initial population and
fitness function we have applied Genetic Algo-
rithm to the problem with Partially Matched
Crossover,Swap Mutation and Elitism as replace-
ment strategy.

6 Experimental Results

In this section we have presented some experimen-
tal results obtained by applying UMDA to the
problems described before.We have run the pro-
grams on a computer with 902 MHZ AMD Athlon
Processor and 512 MB of RAM and in Borland
C++ builder 6.0 environment.

6.1 Subset Sum Problem

Here we have generated positive integers ran-
domly. Then expected sum has been generated
by randomly selecting those generated integers so
that there is always a solution. For trivial case
we have chosen expected sum equal to the sum of
all generated integers. In this case the solution is
{1, 1, . . . , 1}. For random case,

(expected sum) < (sum of all generated integers)

The parameters for the problems are:Total
Run=50; Population Size=1000;Crossover
Rate=0.7, Mutation rate=0.1; Elite=10% and
Truncation Selection for UMDA.The experimen-
tal results are shown in fig 2-5.
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Subset Sum problem (random case)

6.2 OneMax Function

OneMax function is a trivial one. It has only one
solution of all ones. For this function we have
chosen the following parameters: Total run=10;
Population size=10* problem size; Crossover
rate=0.7; Mutation rate=0.1; Elite=10%; Trun-
cation selection for UMDA. The results are shown
in fig 6-7

6.3 n-Queen Problem

For n-Queen problem the solution space is n! and
some of them are feasible solution.For small n one
possible solution can be found quickly by using
dynamic programming. But for larger n this may
not be right choice as it may consume a lot of
memory for recursive function, neither it would be
possible to try all permutations in solution space.
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OneMax function

So EDA can be a choice for the problem to get
solution in a reasonable time limit.

We apply the simplest one UMDA with 2-
opt algorithm as local heuristics with the fol-
lowing parameters:Total Run=50; Population
Size=10*Variable Size; Crossover Rate=0.7; Mu-
tation Rate=0.1; Elitism=10% and the results are
show in fig 8.

7 Discussion

7.1 Subset Sum Problem

From the experimental results we find that for
medium size of problem UMDA provide better re-
sults in respect of generation when the expected
sum is the sum of a proper set of the set of in-
tegers. But calculation of probability distribution
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takes time. For trivial solution (when the final so-
lution consists of all integer) UMDA outperforms
GA in both respects. This is due to the fact that
the variables in the problem are less interdepen-
dent.

7.2 OneMax Function

The OneMax function is a trivial one and the vari-
ables are independent of one another. So UMDA
provides better results than those of GA.

7.3 n-Queen problem

From the experimental results we see that UMDA
with 2-opt as local heuristics produces solution
slower than two other methods, while GA with
Partially Matched Crossover produces result very
fast for higher variable size. This is due to that
fact that the variables, which represent the posi-
tions of the queens in a checkerboard, are highly

co-related. As we have said, UMDA cannot cap-
ture the interdependencies among the variables
of a problem. For highly correlated problems we
may get the dependencies among the variables by
Bayesian networks or other methods, which is our
future work.

8 Related Works Using Esti-
mation of Distribution Al-
gorithms

Some optimization problems have been solved us-
ing Estimation of Distribution Algorithms in [14].
Of them 0/1 Knapsack problem and Traveling
Salesman Problem (TSP) are related to our works.
For 0/1 Knapsack problem they have used both
binary and permutation based representations in
discrete and continuous domains. They have ap-
plied UMDA,MIMIC and Estimation of Gaus-
sian Networks Algorithm(EGNA) for the problem.
They have shown results by randomly obtaining
profits,weights and the capacity of the knapsack.

For TSP they have used 2-opt algorithm as local
search optimization and shown the performance
of different EDAs for two benchmark problems:
Gröstel24 and Gröstel120. Their algorithms found
optimal tour length for the Gröstel24 while 1.2
times greater than that of optimal tour for the
Gröstel120.

9 Conclusion

In this paper we have discussed Estimation of Dis-
tribution Algorithm. It seems reasonable to apply
EDA in place of GA. But the estimation of the
joint probability distribution associated with the
database containing the selected individuals is a
bottleneck of this new heuristic. There is no easy
method to calculate it. If the distribution is more
general we get better result, but calculation of this
distribution is time consuming and complicated
and sampling of new instances using this distribu-
tion is not an easy task.

Due to simplicity we have applied UMDA. It
provides better results for linear problem when
there is no dependency among variables. n-Queen
problem has positional dependencies among vari-
ables. Bayesian network may be a possible
structure-learning algorithm for estimation of
their probability distributions, which is our future
work.
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