
Leveraging Large Language Models for the Generation of Novel
Metaheuristic Optimization Algorithms

Michal Pluhacek
Tomas Bata University in Zlin

Zlin, Czech Republic
pluhacek@utb.cz

Anezka Kazikova
Tomas Bata University in Zlin

Zlin, Czech Republic
kazikova@utb.cz

Tomas Kadavy
Tomas Bata University in Zlin

Zlin, Czech Republic
kadavy@utb.cz

Adam Viktorin
Tomas Bata University in Zlin

Zlin, Czech Republic
aviktorin@utb.cz

Roman Senkerik
Tomas Bata University in Zlin

Zlin, Czech Republic
senkerik@utb.cz

ABSTRACT
In this paper, we investigate the potential of using Large Language
Models (LLMs) such as GPT-4 to generate novel hybrid swarm in-
telligence optimization algorithms. We use the LLM to identify and
decompose six well-performing swarm algorithms for continuous
optimization: Particle Swarm Optimization (PSO), Cuckoo Search
(CS), Artificial Bee Colony (ABC), Grey Wolf Optimizer (GWO),
Self-Organizing Migrating Algorithm (SOMA), and Whale Optimiz-
ation Algorithm (WOA). We leverage GPT-4 to propose a hybrid
algorithm that combines the strengths of these techniques for two
distinct use-case scenarios. Our focus is on the process itself and
various challenges that emerge during the use of GPT-4 to fulfill
a series of set tasks. Furthermore, we discuss the potential impact
of LLM-generated algorithms in the metaheuristics domain and
explore future research directions.

CCS CONCEPTS
• Mathematics of computing→ Evolutionary algorithms.

KEYWORDS
Large Language Models, Metaheuristic Optimization, Swarm Al-
gorithms, Algorithm Generation, Decomposition and Construction,
GPT-4

ACM Reference Format:
Michal Pluhacek, Anezka Kazikova, Tomas Kadavy, Adam Viktorin, and Ro-
man Senkerik. 2023. Leveraging Large Language Models for the Gener-
ation of Novel Metaheuristic Optimization Algorithms. In Genetic and
Evolutionary Computation Conference Companion (GECCO ’23 Compan-
ion), July 15–19, 2023, Lisbon, Portugal. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3583133.3596401

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0120-7/23/07. . . $15.00
https://doi.org/10.1145/3583133.3596401

1 INTRODUCTION
In recent years, the field of optimization has experienced signific-
ant growth, with numerous algorithms being developed to solve
complex problems. Swarm intelligence algorithms have emerged
as popular and effective techniques for tackling a variety of optim-
ization tasks [1, 6]. Despite their strengths, these algorithms often
face challenges in maintaining population diversity and balancing
exploration and exploitation in the search space [4]. To overcome
these limitations, researchers have started to investigate hybrid
approaches that combine the advantages of multiple algorithms
[15]. Swarm intelligence is a research field inspired by the col-
lective behavior of decentralized, self-organized systems, such as
natural swarms. Swarm-based algorithms use interactions among
simple agents to solve complex optimization problems. The family
of swarm-based metaheuristics has grown significantly over the
past decades. Nowadays, there are dozens, if not hundreds, of such
algorithms [1, 6]. The number and variety of the algorithms make
it hard for practitioners to select the proper method for a particular
real-world problem. Moreover, the originality of different methods
is coming under increased scrutiny from the research community
[3]. In such a situation, it is difficult for researchers to orient in the
field and identify novel directions for future improvements.

In this work, we explore the possibility of using Large Language
Models (LLMs), like GPT-4 [14], to simplify and speed up the process
of novel metaheuristic design. Particularly, we focus on the task of
hybridization of several methods.

The proposed approach leverages the knowledge contained in
GPT-4 to generate an optimization technique that fuses concepts
from the selected swarm intelligence algorithms. This study aims
to contribute to the research in LLM-generated algorithms and
describe the process in detail.

Note: Several sections of this manuscript feature direct outputs
from the Large Language Model GPT-4. To maintain the integrity
of the reporting, these outputs were left unaltered and are given in
italic. As noted in the discussion section, the authors recognize that
some information provided by GPT-4 is not accurate and, therefore,
should not be treated as facts or cited as such. The inclusion of
these outputs serves to demonstrate the capabilities and limitations
of the LLM and not to assert the correctness of the information
provided.

1812

https://doi.org/10.1145/3583133.3596401
https://doi.org/10.1145/3583133.3596401
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583133.3596401&domain=pdf&date_stamp=2023-07-24

GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal M. Pluhacek et al.

2 METAHEURISTICS
Metaheuristic optimization algorithms efficiently explore large
search spaces to find near-optimal solutions for complex problems.
Key principles include population-based search for thorough ex-
ploration and balancing exploration and exploitation using various
techniques, such as mutation, crossover, and neighborhood search.
These strategies enable effective navigation of the search space
while guiding the algorithms toward optimal solutions.

Furthermore, these algorithms incorporate stochastic processes,
such as random initialization, probabilistic selection, and random
perturbations, to introduce diversity and randomness into the search
process. This prevents premature convergence and encourages ex-
ploration of different regions within the search space.

Lastly, adaptability and flexibility are essential aspects of me-
taheuristic algorithms. They are designed to be easily tailored to
various optimization problems and domains through the use of
problem-specific operators, objective functions, constraints, para-
meter tuning, and algorithmic modifications. This adaptability al-
lows metaheuristic algorithms to address a wide range of optimiza-
tion challenges effectively.

3 LARGE LANGUAGE MODELS
The development of Large Language Models (LLMs) can be traced
back to the early days of natural language processing (NLP) [7] and
machine learning. Initial efforts in NLP relied on rule-based sys-
tems, where explicit rules and grammar structures were manually
defined to process and generate human language. However, these
systems lacked scalability and adaptability to different languages
and domains.

With the advent of machine learning, researchers began to ex-
plore data-driven approaches for NLP tasks, such as language mod-
eling. Early language models, such as n-gram models [2], captured
the probabilities of sequences of words in a given dataset. While
these models showed promise, they were limited in their ability to
capture long-range dependencies and complex semantic relation-
ships between words.

The introduction of deep learning techniques, particularly re-
current neural networks (RNNs) [11] and long short-term memory
(LSTM) networks [16] allowed for more expressive language models
that could capture longer context windows and learn richer repres-
entations of language. However, these models still faced challenges
in terms of training efficiency and scalability.

In recent years, the emergence of the Transformer architecture
[17] has revolutionized the field of NLP, enabling the creation of
increasingly large and powerful language models. The Transformer
architecture leverages self-attention mechanisms to efficiently cap-
ture long-range dependencies and parallelize the training process,
allowing for the development of LLMs such as GPT-2, GPT-3, and
GPT-4 [14].

4 EXPERIMENT SETUP
Themain focus of this work is the process of using LLMs to generate
novel metaheuristics. To this end, we design a series of steps (tasks)
for the LLM to undertake:

TASK A: Select feasible candidates from the pool of swarm-
based metaheuristics for global optimization and provide a basic
description of the methods.

TASK B: Identify and describe distinct components of each
algorithm suitable for hybridization.

TASK C: Propose a novel hybrid method(s) based on specified
goal(s).

TASK D: Provide a pseudo-code and an implementation of the
proposed algorithm(s).

TASK E: Provide a reasoning for the design of proposed al-
gorithm(s).

The workflow of the experiments is detailed in Figure 1. The
corresponding prompt list is given below:

Prompt 1: "Provide a list of six swarm-based metaheuristics that
have shown promising performance in global optimization tasks,
and their unique characteristics make them ideal candidates for
generating hybrid optimization algorithms using large language
models."

Prompt 2: "Provide reasoning for the selection of these al-
gorithms."

Prompt 3: "Identify unique components of each algorithm. Pro-
vide a description of each component and reason how it affects the
algorithm performance and population dynamic."

Prompt 4: "Suggest a metaheuristic algorithm that would incor-
porate some of these components with the aim to promote popula-
tion diversity and balance exploration and exploitation effectively."

Prompt 5: "Provide a description of the proposed ESEEO (En-
hanced Swarm Exploration and Exploitation Optimizer) algorithm."

Prompt 6: "Suggest a metaheuristic algorithm that would incor-
porate some of these components and was effective for expensive
optimization tasks, where the the number of objective function
evaluations is limited."

Prompt 7: "Provide a description of the proposed LESO (Limited
Evaluation Swarm Optimizer) algorithm."

Prompt 8: "Provide the pseudo-code of ESEEO algorithm."
Prompt 9: "Provide working python implementation of ESEEO

algorithm."
Prompt 10: "Provide the pseudo-code of LESO algorithm."
Prompt 11: "Provide working python implementation of LESO

algorithm."
Prompt 12: "Provide a reasoning for the design of ESEEO."
Prompt 13: "Provide a detailed step-by-step reasoning for the

design of ESEEO."
Prompt 14: "Provide a reasoning for the design of LESO."
Prompt 15: "Provide a detailed step-by-step reasoning for the

design of LESO."
Please note that the GPT-4 is a stochastic system. Given the same

prompt, it may generate different responses depending on various
factors, such as the model’s parameters, the temperature setting,
and the tokens generated during sampling. While the system might
generate different responses, they should still be relevant and co-
herent based on the input prompt. One way to improve the chances
of obtaining similar results in hybrid algorithm design would be
to include additional information (such as the list of algorithms or
components).

1813

Leveraging Large Language Models for the Generation of Novel Metaheuristic Optimization Algorithms GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal

Figure 1: Experimental workflow

The experiment results are presented in the following sections.
Subsequently, we evaluate and discuss the effectiveness of the GPT-
4 LLM on each of these tasks. However, it is important to note that
the evaluation of the performance and other characteristics of the
resulting algorithms is not within the scope of this study.

5 TASK A: SELECTION
In the first task, the GPT-4 was prompted to propose a set of
six swarm-based algorithms that have shown promising perform-
ance in global optimization tasks, and their unique characteristics
make them ideal candidates for generating hybrid optimization
algorithms using LLMs.

The GPT-4 model proposed the following list of algorithms:
• Particle Swarm Optimization (PSO) [9]
• Cuckoo Search (CS) [18]
• Artificial Bee Colony (ABC) [8]
• Grey Wolf Optimizer (GWO) [13]
• Self-Organizing Migrating Algorithm (SOMA)[5]
• Whale Optimization Algorithm (WOA) [12].

Subsequently, we prompted the GPT-4 to provide reasoning for
the selection of these particular algorithms with the following
result:

The algorithms were selected due to their popularity, effectiveness,
and unique features that make them suitable candidates for creating
a hybrid algorithm to tackle complex optimization problems. They
represent a diverse set of swarm-based optimization algorithms that
take inspiration from different natural phenomena.

Particle Swarm Optimization (PSO): PSO is a well-known swarm
intelligence optimization technique inspired by the social behavior of
bird flocks and fish schools. It has been proven effective in solving a
wide range of optimization problems, including continuous, discrete,
and combinatorial problems. Its simplicity, ease of implementation,
and fast convergence make it an attractive choice.

Cuckoo Search (CS): CS is a metaheuristic algorithm inspired by
the brood parasitism behavior of some cuckoo species. It has been
applied to various optimization problems, including constrained and
unconstrained, single and multi-objective, and continuous and discrete
problems. The Lévy flight search strategy, which is employed in CS,
introduces randomness that can help escape local optima.

Artificial Bee Colony (ABC): ABC is another popular swarm-based
optimization algorithm, inspired by the intelligent foraging behavior
of honey bees. The algorithm mimics the search for food sources by
employed and onlooker bees, and has been successfully applied to
various optimization tasks, including function optimization, machine
learning, and engineering design problems.

Grey Wolf Optimizer (GWO): GWO is a recent addition to the
swarm-based optimization algorithms, inspired by the social hierarchy
and hunting behavior of grey wolves. GWO has shown promising per-
formance in solving several benchmark functions, engineering design
problems, and constrained optimization tasks. The algorithm’s unique
exploration and exploitation strategies have received considerable
attention.

Self-Organizing Migrating Algorithm (SOMA): SOMA is a pop-
ulation based optimization algorithm that simulates the migration
and adaptation of individuals within a group. It has been applied to
various optimization tasks, such as function optimization, engineer-
ing design problems, and constrained optimization problems. SOMA’s
unique approach to global and local search is an attractive feature for
creating hybrid algorithms.

Whale Optimization Algorithm (WOA): WOA is inspired by the
bubble-net hunting strategy of humpback whales. The algorithm has
been shown to be effective in solving various optimization problems,
including single and multi-objective optimization tasks, as well as
constrained and unconstrained problems. The unique encircling and
spiral updating mechanisms in WOA offer different search strategies
that can enhance population diversity and convergence.

6 TASK B: COMPONENTS IDENTIFICATION
In this task, the LLM was prompted to identify and describe unique
components of each of the six algorithms and reason how these
components impact the performance and population dynamics of
the algorithm. The summary of the response follows:

Particle Swarm Optimization (PSO):

• Inertia Weight (𝑤): In PSO, the inertia weight is an essen-
tial component that controls the balance between exploration

1814

GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal M. Pluhacek et al.

and exploitation. It affects the convergence speed and accuracy
of the algorithm. A larger inertia weight promotes explora-
tion (global search), while a smaller weight promotes exploit-
ation (local search). Adaptive or time-varying inertia weight
strategies can further enhance the performance of PSO.
• Personal and Global Best: PSO incorporates the concepts
of personal best (p𝑖) and global best (g) positions. These com-
ponents promote cooperation among particles, guiding them
toward the most promising regions in the search space. The bal-
ance between personal and global best updates helps maintain
diversity in the swarm and avoids premature convergence.

Cuckoo Search (CS):

• Lévy Flights: Cuckoo Search introduces Lévy flights as a
method of performing random walks in the search space. Lévy
flights exhibit a combination of long and short steps, mak-
ing them effective for exploring both local and global regions
of the search space. This property contributes to maintaining
population diversity and improving exploration capabilities.
• Host Nest Parasitism: In CS, the cuckoos lay their eggs in
other birds’ nests, which represents a parasitic behavior. The al-
gorithm simulates this by replacing a randomly chosen solution
with a new solution generated by a cuckoo. This replacement
strategy introduces randomness into the algorithm and helps
in avoiding local optima by exploring new regions of the search
space.

Artificial Bee Colony (ABC):

• Employed and Onlooker Bees: ABC divides the search agents
into two groups: employed bees and onlooker bees. Employed
bees are responsible for local search (exploitation) around their
current solution, while onlooker bees perform a global search
(exploration) based on the fitness values of the employed bees’
solutions. This division of labor allows the algorithm to balance
exploration and exploitation effectively.
• Scout Bees: In ABC, scout bees play a crucial role in main-
taining population diversity and avoiding local optima. When
a solution cannot be improved after a certain number of it-
erations, it is considered abandoned, and the employed bee
becomes a scout bee. Scout bees perform a random search in
the solution space, allowing the algorithm to explore new re-
gions and potentially find better solutions.

Grey Wolf Optimizer (GWO):

• Leadership Hierarchy: GWO introduces a social hierarchy
among the search agents, with the three best solutions repres-
enting the alpha, beta, and delta wolves. This hierarchy is used
to guide the other wolves (omegas) in the search space. Each
wolf updates its position considering the leaders’ positions, en-
suring that the search is focused on the most promising areas
of the solution space.
• Encircling andHunting: GWO incorporates two main mech-
anisms for searching the solution space: encircling prey and
hunting. The encircling mechanism is based on the wolves con-
verging toward the prey (i.e., the optimal solution), while the
hunting mechanism involves the wolves performing a random
search around the prey. These mechanisms ensure that the
algorithm balances exploration and exploitation effectively.

Self-Organizing Migrating Algorithm (SOMA):

• Perturbation Vector: In SOMA, a perturbation vector is used
to create variations of the individuals within the population.
Each individual generates several trial positions during the
search process, and these positions are determined by perturb-
ing the original position with a random weight. This approach
helps maintain population diversity and facilitates explora-
tion by allowing individuals to explore different regions of the
search space.
• Migration: The key concept in SOMA is the migration of
individuals toward the best solution found so far. During mi-
gration, individuals move in a step-by-step manner, gradually
converging toward the target. This mechanism encourages ex-
ploitation while still maintaining a degree of exploration by
incorporating randomness through the perturbation vector.

Whale Optimization Algorithm (WOA):

• Shrinking Encircling Mechanism: WOA utilizes a shrink-
ing encirclingmechanism to guide the whales toward the global
optimum. Whales move toward the current best solution while
their search space shrinks. This mechanism promotes conver-
gence toward the optimal solution while still exploring the
surrounding search space.
• Spiral Hunting: InWOA, the whales perform a spiral hunting
behavior around the current best solution. This behavior is
modeled using a logarithmic spiral equation and introduces a
stochastic element to the search process. Spiral hunting helps
maintain population diversity and enhances the algorithm’s
exploration capability.

7 TASK C: HYBRIDIZATION
In this task, the GPT-4 model was prompted to propose a novel
metaheuristic algorithm hybridizing any number of the previously
identified unique components under two scenarios:

(a) An algorithm that promotes population diversity and bal-
ances exploration and exploitation effectively.

(b) An algorithm for expensive optimization tasks, where the
number of objective function evaluations is limited.

To maintain population diversity and balances exploration and
exploitation effectively and the LLM proposed combining Particle
Swarm Optimization (PSO), Cuckoo Search (CS), and Artificial Bee
Colony (ABC) and calling this new algorithm an "Enhanced Swarm
Exploration and Exploitation Optimizer" (ESEEO).

For the expensive scenario the GPT-4 model proposed "The
Limited-Evaluation Swarm Optimizer" (LESO) hybrid metaheuristic
combining elements from Particle Swarm Optimization (PSO), Grey
Wolf Optimizer (GWO), and Cuckoo Search (CS),

The GPT-4 further provided the following descriptions of the
algorithms:

7.1 Enhanced Swarm Exploration and
Exploitation Optimizer (ESEEO)

The ESEEO algorithm consists of the following steps:

• Initialize the population with random solutions. Determine the
best solution found so far (global best).

1815

Leveraging Large Language Models for the Generation of Novel Metaheuristic Optimization Algorithms GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal

• For each individual in the population, calculate the fitness and
update the personal best. Divide the population into two equal
subpopulations (subpopulations A and B).
• For subpopulation A, use PSO with inertia weight and cognitive
components to perform exploration and update personal best.
This part will ensure a proper balance between exploration and
exploitation, considering both the global and local search.
• For subpopulation B, use a combination of CS’s Lévy flights and
ABC’s employed and onlooker bees’ phases. This combination
facilitates both local and global exploration by incorporating
the randomness introduced by Lévy flights and the search for
better solutions around the current best solutions.
• After a predefined number of iterations, combine both sub-
populations and select the top 50% solutions to form the new
population based on their fitness values.
• Redivide the new population into two subpopulations (A and
B) again and perform steps 4-5 for a predefined number of
iterations or until the stopping criterion is met.

By combining the strengths of PSO, CS, and ABC, the Enhanced
Swarm Exploration and Exploitation Optimizer (ESEEO) aims tomain-
tain population diversity and promote both exploration and exploita-
tion more effectively than the individual algorithms alone. This hybrid
approach should improve the chances of achieving a better result.

7.2 Limited Evaluation Swarm Optimizer (LESO)
The Limited Evaluation Swarm Optimizer (LESO) is a novel hybrid
swarm intelligence algorithm designed to solve expensive optimization
problems where the number of objective function evaluations is limited.
It combines the strengths of Particle Swarm Optimization (PSO), Grey
Wolf Optimizer (GWO), and Artificial Bee Colony’s (ABC) local search
capabilities to balance exploration and exploitation effectively. The
proposed algorithm is particularly suitable for expensive optimization
tasks where computational resources or evaluations are constrained.

The LESO algorithm consists of the following steps:
• Initialize the swarm (population) P, algorithm parameters, and
the maximum allowed function evaluations 𝑁𝑚𝑎𝑥 . Evaluate
the fitness of each individual in the swarm. Set the allowed
function evaluations 𝑁𝑒𝑣𝑎𝑙 to zero initially.
• While 𝑁𝑒𝑣𝑎𝑙 is less than 𝑁𝑚𝑎𝑥 , perform the following steps:
– Update the global best solution (gbest) found so far.
– For each individual in the swarm, update their personal best
solution (pbest), position (x), and velocity (v) using the PSO
formulae. If an individual has not improved, consider it as a
potential wolf.

– Select the Alpha, Beta, and Delta wolves from the potential
wolves based on their fitness values.

– Update the position of each individual in the swarm, except
the Alpha, Beta, and Delta wolves, using the GWO method.
The updated position is based on the positions of the Alpha,
Beta, and Delta wolves.

– Randomly select a subset of individuals from the swarm to
act as employed bees.

– For each employed bee, perform a local search using the
ABC’s employed and onlooker bees’ phases. This local search
helps in refining the search around the current best solutions,
allowing for better exploitation.

– Update the allowed function evaluations (𝑁𝑒𝑣𝑎𝑙) by adding
the number of fitness evaluations performed in this iteration.

• After the stopping criterion is met, return the global best solu-
tion found.

8 TASK D: PSEUDO-CODES AND
IMPLEMENTATION

In this task, the LLM was prompted to provide detailed pseudo-
codes of the proposed algorithms. The resulting pseudo-codes are
presented in Algorithm 1 and Algorithm 2. Further, the GPT-4
was requested to generate an implementation of each algorithm in
Python. The generated codes are provided in the supplementary
files.

Algorithm 1 Enhanced Swarm Exploration and Exploitation Op-
timizer (ESEEO)
1: Initialize population 𝑃 , number of iterations 𝑇 , and other al-

gorithm parameters
2: for 𝑡 = 1 to 𝑇 do
3: Update global best 𝑔𝑏𝑒𝑠𝑡 using fitness values of 𝑃
4: Update personal best 𝑝𝑏𝑒𝑠𝑡 for each individual in 𝑃

5: Divide the population 𝑃 into two equal subpopulations 𝐴
and 𝐵

6: for each individual 𝑖 in subpopulation 𝐴 do
7: Update velocity 𝑣𝑖 of 𝑖 using 𝑣𝑖 = 𝑤𝑣𝑖 +𝑐1𝑟1 (𝑝𝑏𝑒𝑠𝑡𝑖 −𝑥𝑖) +

𝑐2𝑟2 (𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖)
8: Update position 𝑥𝑖 of 𝑖 using 𝑥𝑖 = 𝑥𝑖 + 𝑣𝑖
9: Apply boundary constraints if necessary
10: Update 𝑝𝑏𝑒𝑠𝑡𝑖 for individual 𝑖 if the new position has better

fitness
11: end for
12: for each individual 𝑗 in subpopulation 𝐵 do
13: Choose algorithm (CS or ABC) for individual 𝑗 with a

probability 𝑝
14: if algorithm is CS then
15: Generate a random step size 𝑠 from a Lévy distribution

with a scale parameter 𝛽 > 0: 𝑠 ∼ 𝐿(𝛽)
16: Update position 𝑥 𝑗 of 𝑗 using 𝑥 𝑗 = 𝑥 𝑗 + 𝑠 ⊙ (𝑥 𝑗 −𝑔𝑏𝑒𝑠𝑡),

where ⊙ denotes element-wise multiplication
17: Apply boundary constraints if necessary
18: else if algorithm is ABC then
19: Determine if 𝑗 is an employed or onlooker bee and

update position 𝑥 𝑗 accordingly
20: Apply boundary constraints if necessary
21: end if
22: Update 𝑝𝑏𝑒𝑠𝑡 𝑗 for individual 𝑗 if the new position has

better fitness
23: end for
24: Merge subpopulations 𝐴 and 𝐵 into 𝑃
25: Select top 50% of individuals in 𝑃 based on their fitness values
26: end for
27: Return the best solution found

1816

GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal M. Pluhacek et al.

Algorithm 2 Limited Evaluation Swarm Optimizer (LESO)
1: Initialize swarm 𝑃 , algorithm parameters, and maximum al-

lowed function evaluations 𝑁𝑚𝑎𝑥

2: Evaluate fitness of each individual in 𝑃

3: Initialize allowed function evaluations 𝑁𝑒𝑣𝑎𝑙 ← 0
4: while 𝑁𝑒𝑣𝑎𝑙 < 𝑁𝑚𝑎𝑥 do
5: Update global best 𝑔𝑏𝑒𝑠𝑡
6: for each individual 𝑖 in swarm 𝑃 do
7: Update personal best 𝑝𝑏𝑒𝑠𝑡𝑖
8: Update position 𝑥𝑖 and velocity 𝑣𝑖 of 𝑖 using PSO formula:

𝑣𝑖 (𝑡+1) = 𝑤𝑣𝑖 (𝑡)+𝑐1𝑟1 (𝑝𝑏𝑒𝑠𝑡𝑖−𝑥𝑖 (𝑡))+𝑐2𝑟2 (𝑔𝑏𝑒𝑠𝑡−𝑥𝑖 (𝑡))
𝑥𝑖 (𝑡 + 1) = 𝑥𝑖 (𝑡) + 𝑣𝑖 (𝑡 + 1)

9: Apply boundary constraints if necessary
10: Update 𝑔𝑏𝑒𝑠𝑡 if the new position has better fitness
11: if individual 𝑖 has not improved then
12: Consider 𝑖 as a potential wolf
13: end if
14: end for
15: Select Alpha, Beta, and Delta wolves from potential wolves

based on their fitness
16: for each individual 𝑗 in swarm 𝑃 (except Alpha, Beta, and

Delta wolves) do
17: Update position 𝑥 𝑗 of 𝑗 using GWO method based on

positions of Alpha, Beta, and Delta wolves:
𝑥 𝑗 (𝑡 + 1) = 𝑥𝛼 (𝑡) −𝐴𝛼𝐷𝛼 +𝑥𝛽 (𝑡) −𝐴𝛽𝐷𝛽 +𝑥𝛿 (𝑡) −𝐴𝛿𝐷𝛿

18: Apply boundary constraints if necessary
19: Update 𝑔𝑏𝑒𝑠𝑡 if the new position has better fitness
20: end for
21: Randomly select a subset of individuals from 𝑃 to act as

employed bees
22: for each employed bee 𝑘 do
23: Perform local search around 𝑥𝑘 using ABC method and

update position 𝑥𝑘
24: Update 𝑔𝑏𝑒𝑠𝑡 if the new position has better fitness
25: end for
26: Remaining individuals in 𝑃 act as onlooker bees
27: for each onlooker bee 𝑙 do
28: Perform local search around best position found by em-

ployed bees using ABC method and update position 𝑥𝑙
29: Update 𝑔𝑏𝑒𝑠𝑡 if the new position has better fitness
30: end for
31: Update allowed function evaluations 𝑁𝑒𝑣𝑎𝑙 ← 𝑁𝑒𝑣𝑎𝑙 +𝑁𝑐𝑢𝑟𝑟

32: end while
33: Return the best solution found

9 TASK E: REASONING
In the final task, the GPT-4 model was prompted to provide detailed
reasoning for its choices during designing the hybrid algorithms
and as the initial response was deemed too vague, the model was
further prompted to provide a step-by-step reasoning. The gener-
ated responses are provided below.

9.1 ESEEO - reasoning
The design of the Enhanced Swarm Exploration and Exploitation
Optimizer (ESEEO) was guided by the aim of creating a hybrid op-
timization algorithm that synergistically combines key components
from multiple swarm-based methods to achieve superior performance.
The algorithm incorporates aspects of Particle Swarm Optimization
(PSO), Cuckoo Search (CS), and Artificial Bee Colony (ABC).

The primary motivation behind the selection of these components
is to achieve a balance between exploration and exploitation in the
optimization process. The algorithm starts by dividing the population
into two subpopulations (A and B). For subpopulation A, PSO’s ex-
ploration and exploitation capabilities are employed, utilizing inertia
weight and cognitive components. This approach ensures a proper
balance between global and local search while considering both global
and personal best solutions.

For subpopulation B, the algorithm leverages the randomness intro-
duced by CS’s Lévy flights and the search for better solutions around
the current best solutions provided by the ABC algorithm. This com-
bination facilitates both local and global exploration, allowing search
agents to explore the search space more effectively.

The Enhanced Swarm Exploration and Exploitation Optimizer
(ESEEO) is designed to leverage the strengths of Particle Swarm Op-
timization (PSO), Cuckoo Search (CS), and Artificial Bee Colony (ABC)
algorithms. Detailed step-by-step reasoning behind the proposal fol-
lows:

• Initialization: The algorithm starts with a randomly initialized
population. This provides an initial set of diverse solutions in
the search space, allowing the algorithm to explore different
regions during the optimization process.
• Global best update: By identifying the best solution found so
far in the entire population, the algorithm maintains a record
of the highest fitness value achieved, which helps guide the
search process towards optimal regions in the search space.
• Personal best update: For each individual in the population, the
algorithm calculates its fitness and updates its personal best.
This ensures that the particles remember the best solution they
have found so far, which further contributes to the exploration-
exploitation balance.
• Subpopulation division: Dividing the population into two equal
subpopulations (A and B) is an essential step to diversify the
search strategies and exploit the unique strengths of the under-
lying algorithms.
• Subpopulation A (PSO): Using the PSO strategy for explora-
tion and personal best update helps achieve a balance between
exploration (searching new regions in the search space) and
exploitation (improving solutions within the current regions).
The cognitive components of PSO contribute to finding a bal-
ance between the individual’s knowledge and the swarm’s
knowledge.
• Subpopulation B (CS and ABC): Combining CS’s Lévy flights
and ABC’s employed and onlooker bees’ phases in subpop-
ulation B enhances both local and global exploration. Lévy
flights introduce randomness and long-range steps, improv-
ing the search for diverse solutions. In contrast, the employed
and onlooker bees in ABC search for better solutions in the

1817

Leveraging Large Language Models for the Generation of Novel Metaheuristic Optimization Algorithms GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal

neighborhood of the current best solutions, thus intensifying
the search in promising regions.
• Subpopulations merging: After a predefined number of itera-
tions, merging the two subpopulations and selecting the top
50% of solutions based on their fitness values combines the best
solutions found by the different strategies, preserving popula-
tion diversity.
• Iterative process: Redividing the merged population into two
subpopulations (A and B) and repeating steps 4-5 allows the
algorithm to iteratively explore and exploit the search space
while preserving population diversity. This iterative process
continues until a predefined number of iterations is reached or
the stopping criterion is met.

By combining the strengths of PSO, CS, and ABC in a single hybrid
algorithm, the Enhanced Swarm Exploration and Exploitation Optim-
izer (ESEEO) aims to achieve better results by maintaining population
diversity and effectively promoting both exploration and exploitation.

9.2 LESO - reasoning
The design of the Limited Evaluations Swarm Optimizer (LESO) was
driven by the need to create a hybrid optimization algorithm tailored
to expensive optimization tasks, where the number of objective func-
tion evaluations is limited. The algorithm combines key components
from three swarm-based methods: Particle Swarm Optimization (PSO),
Artificial Bee Colony (ABC), and Grey Wolf Optimizer (GWO).

The primary motivation behind the selection of these compon-
ents is to achieve a balance between exploration and exploitation
while minimizing the number of objective function evaluations. PSO’s
exploration capability is enhanced by incorporating an adaptive iner-
tia weight to prevent premature convergence. GWO’s encircling and
hunting behaviors are introduced to ensure efficient exploitation of
promising areas within the search space.

Additionally, the LESO algorithm adopts the employed and on-
looker bee phases from the ABC algorithm, which allows for a more
effective exploration of the search space. This mechanism enables
search agents to focus their efforts on areas with higher potential for
improvement and helps in escaping local optima.

To further reduce the number of evaluations, LESO employs an
adaptive learning mechanism for the search agents. This mechanism
enables the search agents to adjust their exploration and exploitation
tendencies dynamically during the optimization process, focusing
their efforts on areas with higher potential for improvement.

The rationale behind the proposal of the Limited Evaluation Swarm
Optimizer (LESO) is rooted in the need to develop a hybrid swarm
intelligence algorithm that can efficiently solve expensive optimiza-
tion problems with limited function evaluations. To achieve this, it
combines the strengths of the Particle Swarm Optimization (PSO),
Grey Wolf Optimizer (GWO), and the Artificial Bee Colony’s (ABC)
local search capabilities.

A step-by-step reasoning behind the proposal follows:
Selection of algorithms: the algorithm combines PSO, GWO, and

ABC because they each offer unique advantages for exploration and
exploitation. PSO is known for its simplicity and efficiency, while
GWO’s hierarchical structure allows for effective exploration, and
ABC’s local search capabilities make it ideal for exploitation. By
combining these algorithms, the aim is to create a robust optimizer

that can effectively tackle expensive optimization tasks with limited
evaluations.

PSO component: PSO’s update rules for individuals’ personal best
solutions and velocities were incorporated to maintain a balance
between exploration and exploitation. This allows the swarm to be
attracted towards better solutions while still exploring the search
space.

GWO component: By selecting the Alpha, Beta, and Delta wolves
from potential wolves (those that haven’t improved), the algorithm
can encourage exploration by mimicking GWO’s natural hierarchy.
The positions of other individuals are updated based on the positions
of the Alpha, Beta, and Delta wolves, which helps guide the search
toward promising regions of the search space.

ABC local search: LESO introduces the local search capability of
ABC’s employed and onlooker bees to refine the search around the
current best solutions. This addition allows for better exploitation of
the search space, which is crucial for expensive optimization tasks
where function evaluations are limited.

10 DISCUSSION
In this section, we take a look at the way the LLMmanaged to fulfill
the set tasks.

10.1 TASK A
Assignment: In the first task, the GPT-4 model was prompted
to provide a list of six swarm-based metaheuristics that "have
shown promising performance in global optimization tasks, and
their unique characteristics make them ideal candidates for gener-
ating hybrid optimization algorithms using LLMs."

Result assessment: A correct number of algorithms was pro-
posed; all proposed algorithms do exist and are usable for global
optimization. As requested, all algorithms belong to the swarm fam-
ily. The algorithm descriptions are factually correct, albeit general.

10.2 TASK B
Assignment: The second task requested the GPT-4 to identify the
unique (distinct) components of each algorithm.

Result assessment: The model did provide two components
for each algorithm (the number was not defined by the user). It
could be argued that some of the algorithms encompass a differ-
ent number of unique components. Further, the distinctiveness of
these components could also be questioned. The description of the
components does not contain factual errors.

10.3 TASK C
Assignment: Propose a novel hybrid method(s) based on user-
specified goal

Result assessment: GPT-4 successfully proposed two hybrid
algorithms (ESEEO and LESO) by combining selected components
from the six swarm-based algorithms proposed earlier and fur-
ther provided step-by-step descriptions of the hybrid algorithms.
However, a thorough literature review is necessary to validate the
novelty of the proposed algorithms. Google Scholar search for the
names of proposed algorithms found no match. The criteria for se-
lecting particular components are, however, unclear. Interestingly,

1818

GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal M. Pluhacek et al.

the GPT-4 selected in both cases only three components. And in
both scenarios utilizes components from PSO and ABC.

10.4 TASK D
Assignment: The task was to generate pseudo-codes and Python
implementation of the proposed algorithms.

Result assessment: While the LLM generated pseudo-codes
and Python implementation that at first glance resemble the de-
scribed algorithms, closer inspection reveals numerous errors and
inconsistencies.

ESEEO: Both the algorithm description and the pseudo-code fail
to specify the subsequent action after selecting the fitter half of the
population (line 25). This crucial selection step is also absent from
the Python implementation. Additionally, neither the pseudocode
nor the Python implementation includes a counter or check for
the predefined number of iterations mentioned in the algorithm
description.

LESO: Although both the algorithm description and pseudo-
code detail the roles of employed and onlooker bees, the Python
code only utilizes the employed bee behavior. Additionally, the
counting of function evaluations in the pseudocode is defined in
an impractical manner, as all evaluations are added to the counter
at the end of each iteration. This approach is not well-suited for
expensive optimization tasks. Furthermore, the function evaluation
counting is inaccurately implemented in the Python code. In the
ABC segment of the algorithm, the function evaluation counter
is only updated if the new solution outperforms the old one. This
method is clearly incorrect, as the objective function has already
been evaluated irrespective of the solution’s quality.

Moreover, noticeable inconsistencies exist between the pseudo-
codes, such as discrepancies in terminology (e.g., "number of iter-
ations" versus "maximum allowed function evaluations") and the
notation used in the PSO update formula(s). Despite these shortcom-
ings, it is worth mentioning that both Python implementations ran
flawlessly, including the execution of the artificial test function and
results report, without requiring any modifications. This indicates
that the LLM successfully generated working code, even though it
did not perfectly align with the algorithm description.

10.5 TASK E
Assignment: Provide reasoning for the specific design of the pro-
posed hybrid algorithm(s)

Result assessment: The provided reasoning has some critical
flaws, including inaccuracies such as the mention of adaptive inertia
weight in the LESO algorithm, which is absent from its pseudo-
code and Python implementation. The LESO’s reasoning also refers
to an "adaptive learning mechanism," which is not present in the
algorithm.

In contrast, the ESEEO algorithm’s reasoning is more nuanced
and accurate. Though some explanations are general, the reason-
ing for ESEEO correctly describes the rationale for combining key
components from multiple swarm-based methods to balance ex-
ploration and exploitation in the optimization process.

11 CONCLUSION
In this paper, we have investigated the process of employing the
Large Language Model GPT-4 to generate novel hybrid metaheurist-
ics. Overall, the results are promising, as the LLMwas able to adhere
to the instructions without significant errors and produce working
code that aligns with the algorithm descriptions and pseudo-codes.
However, when prompted to elaborate on the reasoning or provide
specific details about the process, inaccuracies appeared more fre-
quently. It is evident that there remain limitations and challenges
to be addressed, making it crucial to approach GPT-4 outputs with
caution. Thorough validation and fact-checking by human users
are essential to ensure the reliability and accuracy of the generated
information.

Given the limited scope of this initial study, several directions
for future research are apparent. Firstly to undertake performance
studies of LLM-generated algorithms and compare their actual
behavior with the desired (and claimed) one. Secondly, investigate
the novelty of LLM-generated algorithms and better clarify the
exact mechanism of algorithm/component selection. There is an
argument to be made that the model might be biased to prefer
popular (frequently published) algorithms [10], regardless of their
actual performance or suitability for hybridization.

Another possible direction for future research could involve
using LLM-generated algorithms as components of hybrid optimiz-
ation approaches or leveraging LLM-generated algorithms to im-
prove the performance of existing metaheuristics through adaptive
parameter tuning or operator selection.

One additional aspect to consider for future research involves the
ongoing enhancement of large language models (LLMs). It would
be beneficial to replicate similar experiments using more advanced
models and observe any differences in the outcome.

Despite their potential, it is important to acknowledge the lim-
itations inherent to Large Language Models. By their very design,
LLMs are incapable of independent reasoning or understanding,
and their output is inherently probabilistic. Thus, while they can
generate innovative and seemingly insightful content, they do not
guarantee the semantic correctness or reliability of the generated
output. The ’black-box’ nature of these models further challenges
the predictability and trustworthiness of their results.

As with any emerging technology, the use of LLM-generated
algorithms in optimization raises important ethical and societal
concerns. Future research should explore these issues and develop
guidelines and best practices for the responsible application of LLM-
generated algorithms in various domains. Ultimately, we envision
a future where LLM-generated metaheuristic algorithms become
an integral part of the optimization research landscape, enabling
researchers and practitioners to rapidly develop and deploy cus-
tomized optimization solutions for a wide range of applications,

ACKNOWLEDGMENTS
The research presented in this paper was partially supported by the
Internal Grant Agency of the Tomas Bata University in Zlin, under
project number IGA/CebiaTech/2023/004, and resources of A.I.Lab
at the Faculty of Applied Informatics, Tomas Bata University in
Zlin (ailab.fai.utb.cz).

1819

Leveraging Large Language Models for the Generation of Novel Metaheuristic Optimization Algorithms GECCO ’23 Companion, July 15–19, 2023, Lisbon, Portugal

REFERENCES
[1] Christian Blum and Andrea Roli. 2003. Metaheuristics in combinatorial optimiz-

ation: Overview and conceptual comparison. ACM computing surveys (CSUR) 35,
3 (2003), 268–308. ISBN: 0360-0300 Publisher: Acm New York, NY, USA.

[2] Peter F. Brown, Vincent J. Della Pietra, Peter V. Desouza, Jennifer C. Lai, and
Robert L. Mercer. 1992. Class-based n-gram models of natural language. Compu-
tational linguistics 18, 4 (1992), 467–480.

[3] Christian L. Camacho-Villalón, Marco Dorigo, and Thomas Stützle. 2022. Ex-
posing the grey wolf, moth-flame, whale, firefly, bat, and antlion algorithms: six
misleading optimization techniques inspired by bestial metaphors. International
Transactions in Operational Research (2022). Publisher: Wiley Online Library.

[4] Maurice Clerc and James Kennedy. 2002. The particle swarm-explosion, stability,
and convergence in a multidimensional complex space. IEEE transactions on
Evolutionary Computation 6, 1 (2002), 58–73. ISBN: 1089-778X Publisher: IEEE.

[5] Donald Davendra and Ivan Zelinka. 2016. Self-Organizing Migrating Algorithm:
Methodology and Implementation. Vol. 626. Springer.

[6] Absalom E. Ezugwu, Amit K. Shukla, Rahul Nath, Andronicus A. Akinyelu, Jef-
fery O. Agushaka, Haruna Chiroma, and Pranab K. Muhuri. 2021. Metaheuristics:
a comprehensive overview and classification along with bibliometric analysis.
Artificial Intelligence Review 54 (2021), 4237–4316. ISBN: 0269-2821 Publisher:
Springer.

[7] Julia Hirschberg and Christopher D.Manning. 2015. Advances in natural language
processing. Science 349, 6245 (2015), 261–266. ISBN: 0036-8075 Publisher:
American Association for the Advancement of Science.

[8] Dervis Karaboga. 2005. An idea based on honey bee swarm for numerical optimiz-
ation. Technical Report. Technical report-tr06, Erciyes university, engineering
faculty, computer

[9] James Kennedy and Russell Eberhart. 1995. Particle swarm optimization. In
Proceedings of ICNN’95-international conference on neural networks, Vol. 4. IEEE,
1942–1948.

[10] Li Lucy and David Bamman. 2021. Gender and Representation Bias in GPT-3
Generated Stories. In Proceedings of the Third Workshop on Narrative Under-
standing. Association for Computational Linguistics, Virtual, 48–55. https:
//doi.org/10.18653/v1/2021.nuse-1.5

[11] Larry Medsker and Lakhmi C. Jain. 1999. Recurrent neural networks: design and
applications. CRC press.

[12] Seyedali Mirjalili and Andrew Lewis. 2016. The whale optimization algorithm.
Advances in engineering software 95 (2016), 51–67. ISBN: 0965-9978 Publisher:
Elsevier.

[13] Seyedali Mirjalili, SeyedMohammadMirjalili, and Andrew Lewis. 2014. Grey wolf
optimizer. Advances in engineering software 69 (2014), 46–61. ISBN: 0965-9978
Publisher: Elsevier.

[14] OpenAI. 2023. OpenAI GPT-4. https://openai.com/research/gpt-4
[15] Günther R. Raidl, Jakob Puchinger, and Christian Blum. 2019. Metaheuristic

hybrids. Handbook of metaheuristics (2019), 385–417. ISBN: 331991085X Publisher:
Springer.

[16] Greg Van Houdt, Carlos Mosquera, and Gonzalo Nápoles. 2020. A review on the
long short-termmemorymodel. Artificial Intelligence Review 53 (2020), 5929–5955.
ISBN: 0269-2821 Publisher: Springer.

[17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[18] Xin-She Yang and Suash Deb. 2009. Cuckoo search via Lévy flights. In 2009 World
congress on nature & biologically inspired computing (NaBIC). Ieee, 210–214.

1820

https://doi.org/10.18653/v1/2021.nuse-1.5
https://doi.org/10.18653/v1/2021.nuse-1.5
https://openai.com/research/gpt-4

	Abstract
	1 Introduction
	2 Metaheuristics
	3 Large Language Models
	4 Experiment setup
	5 TASK A: Selection
	6 Task B: Components identification
	7 TASK C: Hybridization
	7.1 Enhanced Swarm Exploration and Exploitation Optimizer (ESEEO)
	7.2 Limited Evaluation Swarm Optimizer (LESO)

	8 TASK D: Pseudo-codes and implementation
	9 TASK E: Reasoning
	9.1 ESEEO - reasoning
	9.2 LESO - reasoning

	10 Discussion
	10.1 TASK A
	10.2 TASK B
	10.3 TASK C
	10.4 TASK D
	10.5 TASK E

	11 Conclusion
	Acknowledgments
	References

