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Abstract. Genetic Algorithms (GA) have been widely used in operations research and
optimization since first proposed. A typical GA comprises three stages, the encoding, the
selection and the recombination stages. In this work, we focus our attention on the selection
stage of GA, and review a few commonly employed selection schemes and their associated
scaling functions. We also examine common problems and solution methods for such selection
schemes.

We then propose a new selection scheme inspired by sexual selection principles through
female choice selection, and compare the performance of this new scheme with commonly
used selection methods in solving some well-known problems including the Royal Road
Problem, the Open Shop Scheduling Problem and the Job Shop Scheduling Problem.
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1. Introduction

The ideas behind Genetic Algorithms (GA) (Holland, 1975) are derived
from the theory of natural selection originally proposed by Charles Darwin
(Darwin, 1888). In GA, potential solutions to a target problem are viewed as
individuals in a single population where the fitter individuals in any genera-
tion are allowed to reproduce and, in the process, bring forth a new generation
of individuals (solutions). As the population of solutions evolves, fitter solu-
tions are produced and, eventually, optimal or near-optimal solutions are
reached.

There are three main stages in the implementation of GA. The encoding
stage, the selection stage, and the recombination stage.

The encoding stage is where solutions to the target problem are expressed
in a chromosome-like data structure. Usually at the initial encoding stage,
solutions are generated randomly; however, there are cases where problem-
specific heuristics are used. The encoding stage will produce the initial
population (or generation 0) of individuals on which evolution will be
based. Since problems differ from one another, the encoding stage is usually
problem-specific.
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The selection stage is where individuals in the current generation are
chosen from the population and allowed to reproduce. Most selection mech-
anisms are based on the fitness of individuals in the population; hence, during
this stage, it is common to have a measurement of the fitness of the solutions.
The fitness of a solution is often how well the solution addresses the objective
function of the target problem. Selection usually favors the fitter individuals.

The third stage is the recombination stage. In this stage, the selected
individuals (parents) are used to produce child solutions. Two forms of repro-
duction are usually used: (1)The single-parent reproduction technique, or
mutation technique, which involves some modification to the chromosome
of the parent solution, with the resulting chromosome becoming the child
solution, and (2)The multi-parent technique or crossover technique. In this
method, i (i ≥ 2), parents are chosen from the current generation and part
of the chromosomes of each parent is then combined to form a child. It is
not uncommon for the crossover process to produce infeasible child solu-
tions; hence, certain implementations of GA include repair algorithms that
will modify child solutions once crossovers are executed. Once a child is
produced, it is integrated into the population of the next generation.

2. The Selection Stage

In his study of selective mechanisms, Thomas Back (Back, 1994) showed that
the selection process can control the level of exploration or exploitation by
varying the level of emphasis the process assigns to fitter individuals. A more
stringent selection process that is more biased towards the fitter solutions will
push a search towards exploitation while a less stringent selection process
will push a search towards exploration.

If a selection is biased toward the fitter solutions, it exploits the know-
ledge that the current arrangement of the chromosome-like structure of the
individual is good and hence when mated with another solution will prob-
ably retain certain traits and generate fitter offsprings. However, most search
spaces are undulating, and there may exist several local optima in which
searches can get trapped if there is an over-emphasis on exploitation. On the
other hand, if a selection is biased towards unfit solutions (which is rarely
the case since this violates the principle of survival of the fittest), it favors
the exploration of the search space as the weaker solutions may allow escape
routes from local optima. Likewise, over-emphasis on exploration has its ill-
effects; a selection that is too much biased towards exploration can result in a
longer search and will probably require a longer evolutionary process.

To provide a balance between exploration and exploitation, most selection
mechanisms introduce a degree of randomness which ensures that the fittest
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solution will not always be chosen, and the weakest solution will not always
be neglected. However, this alone is not sufficient in most cases and usually
leads to premature convergence where the search converges on a trait of a fit
solution too early in the evolutionary process and eventually all solutions in
the population exhibit this trait. Usually, this happens because the difference
between fit solutions and unfit solutions is too large.

To counter this problem, several scaling mechanisms were introduced.
Scaling mechanisms use functions that will convert the raw fitness of solu-
tions to a scaled fitness with the aim of normalizing or reducing the difference
between them. Scaling is not a simple process as there are usually para-
meters to be tuned and which differ according to the different search spaces
encountered for various problems.

In this work, we propose a new selection method that will provide a clear
separation between exploration and exploitation without the inconvenience
of parameter tuning in scaling. The main idea is to separate the population
into two sexes, males and females. The selection of females will handle the
exploration of the search space while the selection of males will handle the
exploitation of the search space. This is based on the idea of sexual selection
operating through female choice. Hence, all the females will get to mate while
only the more attractive males will be selected for mating, with unattractive
males eventually being eliminated.

3. Common Selection Schemes and Scaling

The significant impact of the selection process in GA and, more gener-
ally, evolutionary algorithms has prompted several studies in this area, see
(Kolarov, 1995), (Muhlenbein and Schlierkamp-Voosen, 1993) and (Blickle
and Thiele, 1995). We will now take a look at the more commonly utilized
selection mechanisms.

Proportional Selection – Proportional Selection is also known as Roul-
ette Wheel Selection or Spinning Wheel Selection because the probability
of an individual’s selection corresponds to a portion of a Roulette Wheel.
Each individual is assigned a selection probability based on its fitness over
the total fitness of the entire population. Once this is done, individuals are
concatenated with each other to form what can be visualized as a spinning
wheel, with each portion of the wheel representing an individual and the
size of each portion representing the corresponding selection probabilities.
Back and Hoffmeister (Back and Hoffmeister, 1991) classify Proportional
Selection as a preservative selection scheme, where every individual has a
non-zero chance of being selected.
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Sigma scaling is commonly used in conjunction with proportional selec-
tion. Sigma scaling produces a scaled fitness, fscaled , from the raw fitness,
fraw, using the formula:

fscaled = S + fraw − fmean

2σ

where,
S is the scaling factor, 1 ≤ S ≤ 5,
fmean is the mean fitness of all individuals in the population, and σ is the
standard deviation.

Tournament Selection – Tournament Selection is one of the more
commonly used selection schemes, perhaps because of its simplicity. The
basic idea of tournament selection scheme is quite straightforward. A group
of individuals is selected randomly from the population. The individuals in
this group are then compared with each other, with the fittest among the group
becoming the selected individual. Typical implementation of Tournament
Selection involves picking only two individuals for comparison. Scaling in
Tournament Selection works by introducing an acceptance threshold, t , into
the selection. Each time, a random number, r (0 ≤ r ≤ 1), is generated.
If r < t then the fitter individual is selected, else the weaker individual is
selected. Usually, t is set to be in the range 0.75 ≤ t ≤ 1.

Rank-based Selection – Rank-based selection schemes first sort indi-
viduals in the population according to certain criteria (usually according to
their fitness). A function is then used to map the indices of individuals in
the sorted list to their selection probabilities. Although this mapping func-
tion can be linear (linear ranking) or a non-linear (non-linear ranking), the
idea of rank-based selection remains unchanged. We note, however, that the
performance of the selection scheme depends greatly on this mapping func-
tion. Rank-based selection schemes belong to the group of static selection
schemes. These are schemes where the nth fittest individual in generation
G1 will have the same selection probability as the nth fittest individual in
generation G2 even if they differ in fitness.

Scaling in Ranked-based Selection involves preserving the top p% of the
population and then ranking them according their fitness. The scaled fitness
of these individuals are then set to be their rank. Consider the case where p

= 80%, where we will eliminate the weakest 20% of the population based on
raw fitness. The remaining 80% of the population are then ranked according
to their raw fitness. Next the scaled fitness is allocated to individuals, with
the top individual scoring 80% of the population size, and next scoring 79%
and so on, ending with the weakest individual being allocated a scaled fitness
of 1% of the population size. Recommended values of p are in the range
80% ≤ p ≤ 100%.
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We will compare the performance of these selection schemes in our
experiments against that of our newly proposed selection scheme.

4. Sexual Selection Scheme

The Sexual Selection scheme was inspired by the concept of sexual selection
proposed by Darwin (Darwin, 1888) which suggests that mate choice in some
species operates through female choice. Our implementation comprises two
main stages. The first stage involves determining the sex of individuals in
the current generation. This can be done either randomly or based on some
problem-specific knowledge where individuals with certain traits are chosen
to be of one sex while the rest are chosen to be of another sex.

The second stage involves the actual selection of a pair of individuals (one
male and one female). The selection of a female is quite straightforward. We
propose that all females will get to reproduce regardless of their fitness level;
hence, females are selected in a sequential fashion without replacement which
means that each female will only get to be selected for mating once. The
male selection stage is fitness biased. Currently, we use tournament selection,
with tournament size two, and without any scaling. A different approach is to
base male selection on some compatibility function with the selected female.
However, it should be noted that by doing this, the selection scheme would
become problem dependent. Hence we choose to use random separation of
males and females and base our male selection purely on fitness.

The Sexual Selection scheme is implemented as follows:
1. Separate the current generation into males and females
2. Select the next unmated female
3. Select a male
4. Mate the female and male to produce offsprings
5. Return to Step 2 until all females have mated

This design ensures that all the females get to reproduce regardless of their
fitness and aims to facilitate exploration of the search space. On the other
hand, bias towards the better performing males exploits the knowledge that
the current chromosome-like structure of the individual is good.

We have proposed this selection scheme with the intent of having a clear
and balanced separation of functions between exploration and exploitation
without the inconvenience of tuning parameters. Figure 1 to Figure 3 illustrate
the Sexual Selection process.
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Figure 1. Separate current generation into females and males.

Figure 2. Pick the next unmated female and select a male based on tournament selection.

Figure 3. Process is repeated until all females have mated.
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4.1. Related works

Gender in a GA process is not a new idea. However, sexes are defined for
the purpose of solving multi-objective optimization where there will be one
gender for each optimization criterion and the GA will select one individual
from each gender to perform recombination so as to produce offspring (Lis
and Eiben, 1996) Similarly, the idea of mate choice has also been incorperated
in GA. Ratford (Ratford et al., 1997a), (Ratford et al., 1997b) and Ronald
(Ronald, 1995) both proposed selection schemes in which the first mate is
selected using a traditional selection method, with the second mate being
selected based on some seduction function between itself and the first mate.
However in their work, there is no explicit notion of separate sexes and the
seduction function is problem dependent.

5. Experiment Setup

The main objective of this study is to show that the performance of the Sexual
Selection scheme is as good, if not superior, to other selection schemes, while
having the advantage of removing the need to determine scaling parameters.
We show that the new scheme provides a good balance between exploration
and exploitation of the search space and, hence, will produce good results.
We compare the performance of the following four selection schemes in our
experiments.
1. Proportional Selection with Sigma Scaling
2. Tournament Selection with Acceptance Threshold
3. Rank-based Selection with Preservation Percentage
4. Sexual Selection

Theoretically, generation 0 in GA is produced randomly, since we do not
know the impact of using different generation 0’s for running GA with each
of the selection schemes. We have chosen to produce a single generation 0
and start off each GA evolution (with different selection schemes) using the
same generation 0 each time. To further ensure that performance variation can
only arise from the different selection schemes employed, we employ consist-
ently the same encoding scheme, fitness measure, recombination method and
crossover points.

We are comparing the performance of the new selection scheme against
that of the traditional selection schemes which employ fitness scaling. Our
experiments were conducted using different parameter settings for each of
the scaling functions. However, since it would take an extremely long time
to empirically determine the best parameter setting for each of the scaling
functions (indeed, a motivating factor for our new selection scheme in the first
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Table 1. Selection schemes, scaling parameters and values experimented.

Selection Method/Parameter Recommended Range Values Experimented

Roulette/Sigma 1.0–5.0 1.0, 2.0, 3.0, 4.0, 5.0

Tournament/Accpt Threshold 0.75–1.0 0.75, 0.85, 0.9, 0.95, 1.0

Rank-based/Presv % 0.8–1.0 0.8, 0.85, 0.9, 0.95, 1.0

place) we have experimented with values that are within the “recommended”
ranges.

To do this, a significantly large number of evolutions of the GA is run each
time, testing different settings of the parameters which are increased at fixed
intervals within the commonly-used ranges. The tested parameters for each
selection scheme are presented in Table 1.

We have experimented with two different settings of the GA, setting 1
involves 30 individuals evolving for 300 generations while setting 2 involves
50 individuals evolving for 500 generations. Each selection scheme (with
different scaling setting) had 30 runs of the GA and the best solution was
captured. The best solution and the average of all the best solutions over the
30 experiments are then compared against the proposed selection scheme.
Results of this comparison are presented in the figures at the end of each
section featuring the test problem.

6. The Royal Road Problem

The Royal Road Problem (RRP) for Genetic Algorithms was studied in
(Mitchell et al., 1992), (Mitchell et al., 1994) and (van Nimwegen et al., 1999)
and was used as a benchmarking problem in (Matsui, 1999). It was originally
proposed to aid the study of the relationship between the performance of GA
with different features of a fitness landscape (see (Mitchell et al., 1992) for
more details).

The Royal Road Problem involves a set of schemas S = S1, S2, . . . , Sn

with which fitness of an individual is determined according the score
allocated to each match between an individual and a schema.

The objective of the Royal Road problem is to obtain a bit sequence
consisting of all 1′s which is the optimal solution. The schema is represented
by a series of 1′s and ∗′s, where ∗′s can be either 1 or 0. Consider a schema
Seg represented by ∗∗11. In this case, individuals 1011, 0011, 0111 and 1111
are all instances of schema Seg.
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Figure 4. The Royal Road fitness function.

An example of the schema is shown in Figure 4. In the example shown, we
consider 64-bit sequences. S1 to S15 represent the scoring schema and C1 to
C15 represent the scores awarded for each match. Hence an individual having
64 1′s would match schema S1 and score 8 points; the same individual would
also match schema S2 and score another 8 points. Similarly, this individual
would match schemas S3 . . . S15. The total score for this individual would be
8 × 8 + 4 × 16 + 2 × 32 + 1 × 64 = 256.

Individuals in the Royal Road problem are represented by a string of 0’s
and 1’s. Individuals are of fixed length L (usually L = 8n, where n is a
positive integer) for the purpose of our experiments, we have chosen to work
on individuals of length ranging from 16 to 2048 bits.

The formal definition of the fitness measure for the RRP is as follows:
Fitness of individual x, F(x) = ∑

s∈S Csσs(x), where
S = the set of scoring schema,
Cs = score allocated for schema Ss ,
σs = 0 if x is not an instance of schema Ss , and
σs = 1 if x is an instance of schema Ss .

Since there is no need to maintain precedence among the bits or to avoid
repetition of bits within the chromosome representation of the solution, the
simple traditional two-point crossover recombination technique is employed
in this experiment.

We experimented with 8 test cases with increasing magnitude, ranging
from 16 to 2048 bits. The head-to-head comparison of the proposed Sexual
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Figure 5. Best Results obtained by Roulette Selection compared against Sexual Selection
(population = 30, generation = 300).

Figure 6. Average Results obtained by Roulette Selection compared against Sexual Selection
(population = 30, generation = 300).

Selection scheme against the 3 other selection schemes for experiments
conducted on 30 individuals over 300 generations are presented in Figures 5
to 10 to and results for experiments conducted on 50 individuals over 500
generation are presented in Figures 11 to 16.

7. The Open Shop Scheduling Problem

The Open Shop Scheduling Problem (OSSP) is another commonly selected
problem for GA benchmarking purposes. (Khuri and Miryala, 1999) gives a
fairly good introduction of the problem, which is also studied in (Fang et al.,
1994) and (Louis and Xu, 1996).
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Figure 7. Best Results obtained by Tournament Selection compared against Sexual Selection
(population = 30, generation = 300).

Figure 8. Average Results obtained by Tournament Selection compared against Sexual
Selection (population = 30, generation = 300).

Figure 9. Best Results obtained by Rank-based Selection compared against Sexual Selection
(population = 30, generation = 300).
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Figure 10. Average Results obtained by Rank-based Selection compared against Sexual
Selection (population = 30, generation = 300).

Figure 11. Best Results obtained by Roulette Selection compared against Sexual Selection
(population = 50, generation = 500).

Figure 12. Average Results obtained by Roulette Selection compared against Sexual Selection
(population = 50, generation = 500).
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Figure 13. Best Results obtained by Tournament Selection compared against Sexual Selection
(population = 50, generation = 500).

Figure 14. Average Results obtained by Tournament Selection compared against Sexual
Selection (population = 50, generation = 500).

Figure 15. Best Results obtained by Rank-based Selection compared against Sexual Selection
(population = 50, generation = 500).
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Figure 16. Average Results obtained by Rank-based Selection compared against Sexual
Selection (population = 50, generation = 500).

The OSSP involves a set of jobs J = j1, j2, . . . , jn. Each job ji consists
of m operations, Oij (j = 1, . . . , m), where each Oij has to be processed on
machine Mj for a period of time represented by Pij without preemption.

The basic assumptions of the OSSP is that each machine can only process
one operation at any time, and each job can only be processed by one
machine at any time; this means that jobs cannot have two or more opera-
tions processed in parallel. There are no constraints on the order in which
operations within a job are being processed.

The objective of the OSSP is makespan minimization. The makespan of a
schedule is defined as the total elapsed time of the schedule.

The primary concern in solving the OSSP is the start time allocated to
each of the operations, O1,1 to On,m. Hence the representation of the problem
is a string of length m × n. The string will contain the sequence at which
operations will be scheduled to their respective machines. Each operation
will be scheduled to the respective machine at the earliest possible time.

Due to the constraints of the OSSP, the earliest possible time of any opera-
tions has two restrictions; firstly, the machine must be free, and secondly, the
job to which the operation belongs must not have any on-going operations.
If either of these two restrictions is violated, the earliest start time of the
current operation will be pushed back until there are no violations of these
two restrictions, i.e. the machine has completed its last operation and the
completion of the on-going operation of the job is achieved.

The following is an example which demonstrates this. Suppose we have
a 4 × 4 OSSP (4 jobs and 4 machines, 16 operations in total). The operating
time of each operation in each job is given in Table 2.

From the table, we can see that operation O1,1 has a operating time of 85
time units, likewise, operation O4,4 has a operating time of 75 time units.
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Table 2. Operating times of a 4 × 4 OSSP.

Machines Job J1 Job J2 Job J3 Job J4

M1 85 23 39 55

M2 85 74 56 78

M3 3 96 92 11

M4 67 45 70 75

In this example, a valid representation of the solution would be a string
containing any permutation of operations O1,1 to O4,4. Let’s say we have a
solution represented by:

O1,1,O1,2,O2,2,O3,4,O2,1,O4,1,O2,3,O2,4,O1,3,O3,3,O4,2,O3,1,O4,4,

O1,4,O3,2,O4,3.
This represents the order in which the operations are scheduled.
We now examine this scheduling process:

− First to be scheduled is operation O1,1, since machine M1 is currently
unoccupied and job j1 has no on-going tasks, the earliest start time for
O1,1 is determined to be at time 0.

− The next operation to be scheduled is O1,2, although machine M2 is
unoccupied at time 0, we note that O1,2 and O1,1 both belong to job j1,
hence the operation O1,2 has to wait for operation O1,1 to be completed
before it can commence. Referring to Table 2, we see that the operating
time for O1,1 is 85 time units, which means that the earliest start time
for O1,2 will be at time 85.

− The next operation to be scheduled is O2,2. We note that job j2 has
no on-going operations, however, since operation O1,2 is scheduled
before operation O2,2, operation O2,2 has to wait until operation O1,2

is completed and machine M2 is released before it can commence. In
this case, the earliest start time for operation O2,2 is the earliest start
time for O1,2 + the operating time of O1,2, which is 85 + 85 = 170.

− The same applies to the rest of the operations following the order given
in the solution string above. The end result is shown in Table 3.

As mentioned above, the objective of the OSSP is makespan minimization;
hence the fitness function is the makespan of the schedule. From the example
given above, we can see from Table 3 that the makespan of the schedule is
553 time units.

The encoding scheme employed for solving the OSSP required that there
are no missing or duplicate operations on the solution chromosome. Hence,
a normal single/multiple-point crossover technique cannot be used. Instead,
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Table 3. 4 × 4 OSSP resultant operating times for schedule: O1,1,O1,2, O2,2,

O3,4, O2,1,O4,1, O2,3,O2,4, O1,3,O3,3, O4,2,O3,1, O4,4,O1,4,O3,2,O4,3.

Machines Job Operation Operating Time Start Time End Time

M1 J1 O1,1 85 0 85

M2 J1 O1,2 85 85 170

M2 J2 O2,2 74 170 244

M4 J3 O3,4 70 0 70

M1 J2 O2,1 23 244 267

M1 J4 O4,1 55 267 322

M3 J2 O2,3 96 267 363

M4 J2 O2,4 45 363 408

M3 J1 O1,3 3 363 366

M3 J3 O3,3 92 366 458

M2 J4 O4,2 78 322 400

M1 J3 O3,1 39 458 497

M4 J4 O4,4 75 408 483

M4 J1 O1,4 67 483 550

M2 J3 O3,2 56 497 553

M3 J4 O4,3 11 483 494

some other crossover methods which are suitable for sequencing problems
are used. These include the partially-mapped crossover (PMX), the order
crossover (OX) and the cycle crossover (CX) methods (see (Goldberg, 1989)
and (Fox and McMahon, 1991)). There are more recent methods such as the
neighbourhood relationship crossover (NRX) and the meta-ordering cros-
sover operator (MOX) (see (Aşveren and Molitor, 1996)). We have chosen
to use the PMX for our experiments because it is one of the most frequently
used recombination technique for solving the Traveling Salesman Problem
(another well known sequencing problem with encoding scheme that is very
similar to the OSSP).

We give an example of PMX here:
Let A, B, C, D, E, F, G, H, I and J be the set of operations Oij . Suppose we

have two individuals, Parent 1 and Parent 2, with the following sequences,
Parent 1 = I, H, D, E, F, G, A, C, B, J
Parent 2 = H, G, A, B, C, J, I, E, D, F
Two crossover points are arbitrarily selected; suppose in this case, the

crossover points are selected to be at position 3 and 7 (inclusive).
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Table 4. Details of Test Cases for OSSP.

Case Number of Jobs Operations per Job

1 5 5

2 8 8

3 10 10

4 12 12

5 15 15

6 18 18

7 20 20

8 25 25

PMX works by finding the mappings of elements within the portion
bounded by the two crossover points, between Parent 1 and Parent 2 and
swapping the mapped elements in each parent to produce the child.

Suppose now we map Parent 2 to Parent 1. We see that element D is
mapped to A; hence we swap element D and A in Parent 1 to get Parent 1′.

Parent 1 = I, H, D, E, F, G, A, C, B, J
Parent 2 = H, G, A, B, C, J, I, E, D, F
Parent 1′ = I, H, A, E, F, G, D, C, B, J
Next we see that element E is mapped to B; again we swap elements E

and B in Parent 1′ to get:
Parent 1′ = I, H, A, E, F, G, D, C, B, J
Parent 2 = H, G, A, B, C, J, I, E, D, F
Parent 1′′ = I, H, A, B, F, G, D, C, E, J
Following the same process, we swap F and C, G and J, and finally D and

I to get a child individual:
Child 1 (from Parent 1) = D, H, A, B, C, J, I, F, E, G
Here, letters F, E and G are the result of swaps with letters between the

crossover points. The same process can be carried out by mapping Parent 1
to Parent 2 and swapping elements in Parent 2 to obtain Child 2.

We experiment with 8 test cases with increasing magnitude and difficulty;
the details of the test cases is shown in Table 4. The results of the head-
to-head comparisons between the selection schemes for GA setting of 30
individuals evolving over 300 generations are presented in Figures 17 to
22 while the results for 50 individuals over 500 generations are presented
in Figures 23 to 28. It should be noted that the objective of the OSSP is
makespan minimization and hence solutions with low values are superior.
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Figure 17. Best Results obtained by Roulette Selection compared against Sexual Selection
(population = 30, generation = 300).

Figure 18. Average Results obtained by Roulette Selection compared against Sexual Selection
(population = 30, generation = 300).

Figure 19. Best Results obtained by Tournament Selection compared against Sexual Selection
(population = 30, generation = 300).
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Figure 20. Average Results obtained by Tournament Selection compared against Sexual
Selection (population = 30, generation = 300).

Figure 21. Best Results obtained by Rank-based Selection compared against Sexual Selection
(population = 30, generation = 300).

Figure 22. Average Results obtained by Rank-based Selection compared against Sexual
Selection (population = 30, generation = 300).
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Figure 23. Best Results obtained by Roulette Selection compared against Sexual Selection
(population = 50, generation = 500).

Figure 24. Average Results obtained by Roulette Selection compared against Sexual Selection
(population = 50, generation = 500).

Figure 25. Best Results obtained by Tournament Selection compared against Sexual Selection
(population = 50, generation = 500).
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Figure 26. Average Results obtained by Tournament Selection compared against Sexual
Selection (population = 50, generation = 500).

Figure 27. Best Results obtained by Rank-based Selection compared against Sexual Selection
(population = 50, generation = 500).

Figure 28. Average Results obtained by Rank-based Selection compared against Sexual
Selection (population = 50, generation = 500).
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8. The Job Shop Scheduling Problem

The Job Shop Scheduling Problem (JSSP) is a variant of the Open Shop
Scheduling Problem where the main difference is that there exists a preced-
ence relationship between operations belonging to the same job. It is a
combinatorial problem of considerable industrial importance especially in
manufacturing. Genetic Algorithms have been successfully used to generate
good solutions for the JSSP (see (Falkenauer and Bouffouix, 1991), (Vaessens
et al., 1994) and (Fang et al., 1993) for example).

Similar to the OSSP, the JSSP involves a set of jobs J = j1, j2 . . . jn.
Each job ji consists of m operations, Oij (j = 1 . . . m), where Oij have to
be processed on machine Mj for a period of time represented by Pij without
preemption.

The basic assumptions of the JSSP is that each machine can only process
one operation at any time, and each job can only be processed by one
machine at any time; this means that jobs cannot have two or more operations
processed in parallel. However, unlike the OSSP, operations in the JSSP have
precedence relationships. For ease of representation, we assume that opera-
tion Oij can only commence upon the completion of Oij−1 for all values of
j ≥ 1

As with OSSP, the objective function of the JSSP is also makespan
minimization.

A large part of the representation for the OSSP can be reused for encoding
the JSSP. The primary concern when solving the JSSP is also the start time
allocated to each of the operations, O1,1 to On,m. The representation of the
problem is a string of length m × n. The string will contain the sequence
at which operations will be scheduled to their respective machines. Each
operation will be scheduled to the respective machine at the earliest possible
time.

Similar to the OSSP, the earliest possible time of any operation in the JSSP
has two restrictions; firstly, the machine must be free, and secondly, the job
to which the operation belongs to must not have any on-going operations. If
either of the two restrictions is violated, the earliest start time of the current
operation will be pushed back until there are no violations of the these restric-
tions, i.e. the machine has completed its last operation and the completion of
the on-going operation for the job is achieved.

However, since the one of the main requirements for encoding the JSSP is
to maintain the precedence relationship between each operations within each
job, the encoding is done in two separate stages. The first stage determines
the order in which jobs are scheduled, while the second stage determines the
order in which operations are scheduled.
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We illustrate with an example. Suppose we have a 4 × 4 JSSP (4 jobs and
4 machines, 16 operations in total).

To encode the JSSP, we will have to first encode the sequence in which
jobs are scheduled. Since a valid schedule will contain the order in which
all the 16 operations will be scheduled, each job will appear 4 times in
the schedule. Hence to perform the first stage of the encoding, each job is
randomly placed into the schedule 4 times.

Suppose we produce the following partial schedule:
j1, j1, j2, j3, j2, j4, j2, j2, j1, j3, j4, j3, j4, j1, j3, j4

This can be translated to produce a partial schedule which looks like:
O1,∗,O1,∗,O2,∗,O3,∗,O2,∗,O4,∗,O2,∗,O2,∗,O1,∗,O3,∗,O4,∗,O3,∗,O4,∗,

O1,∗,O3,∗,O4,∗.
Where ′∗′ represents the operation number in each job which will be

addressed in the second stage of the encoding.
Since we assume that the operations in each job precedes each other in the

same order of their operation number, that is, operation 1 must be completed
before operation 2 can commence and operation 2 must be completed before
operation 3 can commence and so on. The second stage of the encoding is to
simply fill up the operation numbers in this order.

Doing this, we will generate the following valid schedule:
O1,1,O1,2,O2,1,O3,1,O2,2,O4,1,O2,3,O2,4,O1,3,O3,2,O4,2,O3,3,O4,3,

O1,4,O3,4,O4,4.
The process of actually scheduling the task and obtaining the makespan is

exactly the same as for the OSSP.
Maintaining a precedence relationship among the operations in the

schedule is of the utmost priority when performing recombination; hence,
we have used a variant of the two-point crossover proposed in (Hartmann,
1998). The processes are illustrated in Figure 29.

Assume we have now selected two individuals (female and male) for
recombination and let P 1 and P 2 be the two crossover points.

1. Operations from point 0 to P 1 are duplicated directly from the female
individual to the child individual.

2. The first (P 2 − P 1) operations in the male that are not already in the
child are then added to the child individual with their relative positions
with each other preserved.

3. The remaining n − P 2 operations in the child individual are taken from
the female; again, only operations that have not appeared in the child are
selected and their relative positions are also maintained.

Maintaining the relative positions of the operations as they appear in the
parent list would ensure that the child solution generated does not violate the
original precedence constraint (see (Hartmann. 1998) for proof).
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Figure 29. 2-point crossover replacing the portion of the female bounded by the 2 crossover
points.

Figure 30. Best Results obtained by Roulette Selection compared against Sexual Selection
(population = 30, generation = 300).

We have used the same test set as the one used for OSSP for our experi-
ments for the JSSP. Once again, the objective is makespan minimization and
the results for experiments with population size of 30 individuals evolving for
300 generations are presented in Figures 30 to 35 and that of 50 individuals
for 500 generations are presented in Figures 36 to 41.

9. Conclusion

From our experiments, we have found that scaling definitely improves the
results of Roulette Wheel Selection. It should be noted that Rank-based
Selection even without the cutoff percentage p (see Section 3) is essentially
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Figure 31. Average Results obtained by Roulette Selection compared against Sexual Selection
(population = 30, generation = 300).

Figure 32. Best Results obtained by Tournament Selection compared against Sexual Selection
(population = 30, generation = 300).

Figure 33. Average Results obtained by Tournament Selection compared against Sexual
Selection (population=30, generation = 300).
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Figure 34. Best Results obtained by Rank-based Selection compared against Sexual Selection
(population = 30, generation = 300).

Figure 35. Average Results obtained by Rank-based Selection compared against Sexual
Selection (population = 30, generation = 300).

Figure 36. Best Results obtained by Roulette Selection compared against Sexual Selection
(population = 50, generation = 500).
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Figure 37. Average Results obtained by Roulette Selection compared against Sexual Selection
(population = 50, generation = 500).

Figure 38. Best Results obtained by Tournament Selection compared against Sexual Selection
(population = 50, generation = 500).

Figure 39. Average Results obtained by Tournament Selection compared against Sexual
Selection (population = 50, generation = 500).
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Figure 40. Best Results obtained by Rank-based Selection compared against Sexual Selection
(population = 50, generation = 500).

Figure 41. Average Results obtained by Rank-based Selection compared against Sexual
Selection (population = 50, generation = 500).

a selection scheme with built-in fitness scaling. This could explain why in
cases where no scaling is used, Rank-based Selection performs better then
Roulette Wheel and Tournament Selection schemes. The new Sexual Selec-
tion Scheme proposed performs either on-par or better than Roulette Wheel
selection on average when no fitness scaling is used. This is true for both
the average case and for the best result in both problems. The new scheme
also performs better on average when compared to Tournament Selection in
the more difficult test cases when no scaling is used. This could be due to the
over-bias to fitter solutions which is in the nature of the Tournament Selection
problem.

In GA, the selection stage is generally not problem-dependent; hence
selection schemes can be used to solve different problems with little or no
modifications. We are confident that the new selection scheme as proposed
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here will work as well with other optimization, scheduling and planning
problems.
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