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Abstract

This paper presents the emergence of the
cooperative behavior for multiple agents by
means of Genetic Programming (GP). For
the purpose of evolving the effective coopera-
tive behavior, we propose a controlling strat-
egy of introns, which are non-executed code
segments dependent upon the situation. The
traditional approach to removing introns was
able to cope with only a part of syntacti-
cally defined introns, which excluded other
frequent types of introns. The validness of
our approach is discussed with comparative
experiments with robot simulation tasks, i.e.,
a navigation problem and an escape problem.

1 Introduction

Recently intelligent agents and multi-agent systems
have attracted much interest in Distributed Artificial
Intelligence (DAI). GP and its variants have been ap-
plied to the multi-agent learning (see [Haynes et al.95],
[Luke et al.96], [Iba96], [Hara et al.99] for example).
However, in the multi-agent application of GP, the
computational burden is often problematic. This is
because the number of GP trees required for the multi-
agent task becomes larger with the number of agents.
For instance, in the heterogeneous breeding strategy
(see Section 2 for details), each agent uses a distinct
GP program so that the total number of GP trees is
N times as great as that of a single-agent task, where
N is the number of agents.

Programs generated by GP grow very quickly in size
and include large amount of non-functional codes, i.e.,
introns. This "bloating” effect degrades the GP search,
in the sense that (1) larger programs often require
more time and more space to run, and (2) larger pro-
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grams tend to show worse generalization performance
than shorter ones. Thus, reducing introns is very im-
portant in the GP search. The bloating is supposed
to have a much worse effect on the multi-agent ap-
plication because of a greater number of GP tress re-
quired for the task. [Soule et al.96] showed that the
exponential growth was mainly dominated by non-
functional codes. He used a controlling method of
the tree growth by removing non-functional code seg-
ments, and demonstrated its effectiveness in bounding
the programs’ size. However, the deletion of all non-
functional code segments is known to be an insolvable
problem. It is reducible to the program equivalence
problem, which is non-recursive. Thus, he only re-
moved a part of syntactic introns that are known to
be non-executed before the execution. These introns
exclude other frequent types of introns (see Section 3
for details).

This paper introduces the concept of "effective in-
trons”, i.e., non-functional code segments of a GP tree
dependent upon the execution, and proposes a con-
trolling scheme of the tree growth for multi-agent GP
learning. Based on the empirical studies, we show the
effectiveness of our approach in the following points:

1. The fitness transition is improved during the
training phase.

2. The code growth is effectively controlled.

3. The robustness of acquired programs is increased.

The rest of this paper is structured as follows. Section
2 describes the experimental setting for GP learning.
Section 3 introduces a basic idea of controlling effec-
tive introns. Section 4 shows the experimental results
with robot tasks. The performance is compared with
traditional GP strategies. Section 5 discusses our ap-
proach, followed by some conclusion in Section 6.



2 Experimental Domains and GP
Setting

In this paper, we use the following tasks for au-
tonomous robots (see Fig.1). The world is a contin-
uous 2-dimensional area on which there exist agents
(i.e., robots) and obstacles. An agent is represented
by an alphabet which is able to move in any direction.
In our simulation, robots are supposed to be equipped
with different sensors and motors. Thus, the appro-
priate job separation is required to solve efficiently the
tasks described below.

The first task we have chosen is the robot naviga-
tion. Some of the training maps are shown in Fig.1(a)
and (b), in which four robot agents are represented as
a,b,c, and d. There are obstacles such as circles (a)
or walls (b). The surrounding circle around an agent
represents its view area. The destination of an agent is
illustrated as an arrow. For instance, in Fig.1(a), the
goal position of agent a is the start position of agent
b. The agents’ goal is to find the optimal path from
given starting locations to their respective goals, while
avoiding the obstacles and other robots.

The second task is an ”escape problem”, in which
robot agents are supposed to leave a room from a door
(or hole) in case of emergency, such as a fire (Fig.1(c)).
However, in order to open the door (shown as O in the
figure), they have to push all the buttons (shown as
+). Thus, this task consists of (1) pushing buttons
and (2) escaping from the room into the door.

In order to apply GP to evolving agents’ programs
for the above tasks, we use the terminal and nonter-
minal sets shown in Table 1. In the table, a symbol
without any argument is a terminal symbol. We have
chosen a vector operation for the GP tree representa-
tion. This is aimed at incorporating more precise di-
rectional information as to the environment surround-
ing the agents. The output vector of a GP tree tells the
agent how to move next, i.e., the robot moves forward
in the vector’s direction with the speed proportional
to the vector’s length unless it bumps into some ob-
stacle. The robot commands are taken from a real
robot, or can be constructed easily with the primitive
commands (see [Ito et al.96] for details). We assume
agents, i.e., robots, have an eye sensor with some lim-
ited view area. This area is shown as a circle in Fig.1.
If the nearest agent is out of its scope, then the Near-
est_Agent terminal returns a zero vector. It is also the
case with the if_obstacle function.

There have been different breeding strategies proposed
for the multi-agent learning by GP (see [Luke et al.96],
[[ba96] and [Hara et al.99] for details). This paper

uses the co-evolutionary breeding strategy, in which
GP individuals are divided into a set of agent-type
subpopulations (see Fig.2). Breeding is performed in
the same way as in a distributed GP. As generations
proceed, some individuals are expected to perform spe-
cialized tasks for different agents. We evaluate the fit-
ness of individuals in an agent-type subpopulation as
follows: Initially, i.e., at the first generation, the other
agents’ programs are chosen randomly. At later gener-
ations, we choose as the other agents’ program the best
programs evolved so far in the other agent-type sub-
populations. In our previous papers [Iba96],[Iba9g],
we have empirically shown the superiority of the co-
evolutionary breeding over the traditional strategies,
such as the homogeneous breeding! and the heteroge-
neous breeding? .

The primitive behaviors, such as avoiding obstacles or
searching for the goal, are supposed to be common
among different agents. These building blocks can
be evolved jointly. Therefore, we allow the migration
of elite individuals between the agent-type subpopula-
tion. The migration is expected to promote the gene
exchange and result in the further improvement of the
performance, which will be seen in later experiments.

3 Controlling Effective Introns

Syntactic introns in a GP tree are program code seg-
ments that are not reached and non-executed. For
instance, in the codes (if true A B) and (or true X),
both B and X are not executed. [Soule et al.96] used
a method of replacing a nested non-functional code by
a non-operational code. Consider the following codes:

(if A B (while A C D))
(if_1te A B (if_1te ABE F) G)

where A, B, C, etc. are any (list of) statements. In
the first code, the second argument of the ”if” state-
ment, i.e., (while A C D), is never executed, because it
is only executed if A is false. In the second code, the
statement F is never executed because the ”if 1te” con-
dition is satisfied only when A is less than or equal to
B. However, it is not easy to check these introns syn-
tactically. It is known to be reducible to the problem
equivalence problem and non-recursive.

There is another type of introns. Consider the follow-
ing code:

(if_obstacle A B C)

! In the homogeneous breeding strategy, all agents use
the same program evolved by GP.

2 Each agent uses a distinct program in the heteroge-
neous strategy.
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Figure 2: Co-evolutionary Breeding for Multi-Agent Learning

The statement A in the above code is never executed
if the agent is in a room without any obstacles (see
Table 1). Thus, the execution of these statements A,
B and C is dependent upon the situation. We have
often seen this type of introns appear in the evolved
GP codes for the robot task.

We introduce the concept of "effective” introns, i.e.,
non-executed code segments upon the execution. For
the sake of the identification, we attach an execution
counter to each terminal or function symbol in a GP
tree. This counter is set to be zero at the outset of
the execution. During the evaluation of the tree, the
counter is incremented when its symbol is evaluated.
For instance, consider the above-mentioned code seg-
ments again:

(if A[0] B[0] (while A[0] c[0] D[0]))
(if_1te A[0] B[O]

(if_1te(A[0] B[0] E[0] F[0]) G[0l)

where the number in the bracket represents the corre-
spondent counter. After the evaluation, suppose that
we get the following code with counters incremented:

(if A[30] B[30] (while A[0] c[0] D[0]))
(if_1te A[34] B[34]
(if_1te A[34] B[34] E[34] F[0]) G[0])

The symbol whose counter remains zero is regarded
as an effective intron, which can be removed by an
edit operator. For instance, the statement (while A C
D) in the first code and the symbols F and G in the
second code can be removed. Note that the concept
of effective introns subsumes that of syntactic introns.
Moreover, its definition is dependent upon the evalu-
ating situation. For example, if the symbols A and
B in the second code are evaluated dependently upon
the situation, i.e., if in some cases A is greater than B,



Table 1: GP Terminals and Functions.

Name #Args. Description

Destination 0 The directional vector by which to move the agent toward its goal.

Last 0 The last vector of the GP output for the agent. If this is the first move, then returns a

Nearest_Agent 0 'Zl’eﬁg X?l"cfst(%lgbnal vector by which to move the agent toward the nearest agent.

Rand 0 A random vector.

+ 2 Add two vectors.

- 2 Subtract two vectors.

*2 1 Multiply the magnitude of a vector by 2.

/2 1 Divide a vector by 2.

<-45 1 Rotate a vector counterclockwise 45 degrees.

->45 1 Rotate a vector clockwise 45 degrees.

inv 1 Invert a vector, i.e., if the input is v, then return —w.

if_dot 4 If their dot product is greater than 0, then evaluate and return the third argument, else
evaluate and return the fourth argument.

if 1te 4 If the magnitude of the first argument is greater than the magnitude of the second
argument, then evaluate and return the third argument, else evaluate and return the
fourth argument.

if right 5 If the first argument is in the right side to the second argument, then evaluate the third
argument. Else if the first is in the left side to the second, then evaluate the fourth. Else
evaluate the fifth argument.

if_crash_wall 2 If the agent bumped into the wall in the last motion, then evaluate the first argument,
else evaluate the second argument.

if crash_agent 2 If the agent bumped into another agent in the last motion, then evaluate the first argu-
ment, else evaluate the second argument.

if obstacle 3 If there exists a wall between the agent and the destination, then evaluate the first

argument, Else if there is another agent between them, then evaluate the second. Else

evaluate the third argument.

and in other cases, A is smaller, then we will have the
following results:

(if_lte A[34] B[34]
(if_lte A[24] B[24] E[24] F[01) G[101)

where A is greater than B in 24 cases out of 34 cases.
In this situation, G is not an intron.

[Smith et al.96] discussed the analysis of introns and
gave a useful taxonomy of them. Effective introns in
our paper correspond to their types 1, 2 and 4. We
try to extend their previous researches and establish
a controlling method of the above-mentioned effective
introns. The next section describes experimental re-
sults to show the effectiveness of our approach.

4 Experimental Results

This section explains the experimental results with the
robot tasks described in Section 2. GP parameters
we have chosen are as follows: Population size = 512,
Maximum generations = 50, and Tournament selection
method.

4.1 Navigation Problem

We used six different maps for the training. Some
of the training maps are shown in Fig.1(a) and (b).

The initial positions of agents are changed at every
generation for the training data. The fitness (F) is
defined in the following way. In general, the faster the
task is finished, the better, i.e., the smaller, the fitness
is.

100.0 — 3 x (Remaining Times) Success

{ 300.0 + 7 28NS 1y(1oe Dest;)  Failure
(1)
The GP program of a robot agent is evaluated for a
limited number of time steps, i.e., 40 to 50 time steps.
If all agents have reached their destination during the
evaluation, i.e., the task is completed, then the fitness
is reduced with a bonus proportional to the remain-
ing time steps. When the task has not been finished,
the fitness is added with a penalty. The penalty is de-
pendent upon the distance between the current agent
location and its destination, i.e., D(Loc;, Dest;). The
actual fitness of a GP program is the averaged value

of the above fitness over all the training maps.

Fig.3(a) shows the experimental result, which plots the
fitness values with generations. We compare four dif-
ferent types of GP runs, i.e., GP with/without control-
ling effective introns, and with/without the migration.
The data are averaged over 50 runs. Note that the fit-
ness value of 100.0 is considered as the task complete
level. For standard GP runs, the final fitness value was
about 140, which is well over the task complete level



600

500 w
400 \

300 i‘

Y normal
L} "

with intron control

Training Fitness

200

sy e XN#)Q O

by | g—‘: O OO0

I'I‘ E

100 A bl .,if:?ffﬁg Saagieg
with intron control & migration with migration

O 0-0-0.0-04 B

1 6 " 16 21 26 31 36 41 46
Generation

(a) Training Cases.

600

500
normal

400
NG with intron control

oo
}“ 'u"qjﬁanm ot 20000.050006,,00 a0 000
300 4‘.;31.%«,7% TS aooy
K-’ w,‘..

Tatunng -ru:x::“\.
-

with intron control & migration

Test Fitness

200

-
with migration
100

1 6 1 16 21 26 31 36 41 46
Generation

(b) Test Cases.

Figure 3: Experimental Results (Generation vs. Fitness)
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Table 2: Numbers of Successful Runs

(see the line labeled as "normal”). In fact, in only ten
cases out of 50 runs, all four robots were evolved to
reach their respective goals. On the other hand, if we
controlled the effective introns, the better performance
was obtained. When we used the migration as well, the
performance was further improved. Table.2 compares
the numbers of successful cases out of 50 runs.

Fig.4 shows the example behavior of an evolved robot.
As can be seen in the figure, some robots behaved in
a different way from others. For instance, the robot
agent marked as an arrow dashed to its goal, i.e., it
never gave way even when it came across other agents.
Another agent always gave way to other agents. Thus,
we can observe that the appropriate job separation has
been established for this navigation task.

Fig.5(a) shows the averaged sizes of the best programs
with generations. Fig.5(b) plots the intron ratios. We
can confirm that the effective introns were successfully
removed by the proposed method, which we believe
leads to the above-mentioned improvement.

The robustness is an important feature of a program
evolved by GP [Ito et al.96]. It is defined as the ability
to cope with noisy or unknown situations. In the robot
navigation, the robustness could be examined by test-
ing an evolved program for another navigation task.
In pursuit of the robustness, we verified the validness

of an evolved program for testing data, which were dif-
ferent from the training data. We used three testing
maps. The initial 100 positions were randomly gener-
ated every time for the sake of testing the generaliza-
tion performance. Thus, 300 cases in total were tested
for the validation. The result is shown in Fig.3(b). As
can be seen from the figure, we can confirm the effec-
tiveness of the removing method of effective introns,
in terms of the robustness.

4.2 Escape Problem

We used four different maps for the training. One of
the training maps is shown in Fig.1(c), in which six
robot agents are represented as a,b,c etc. The max-
imum speed of robots are ranked as a = b < ¢ =
d < e = f. That is, robots e and f move faster than
the others. For this task, we introduced a special ter-
minal for identifying the button, i.e., Nearest_Button.
We have again confirmed the effectiveness of control-
ling effective introns with this more complicated task
(see Fig.6). Fig.7 shows the experimental results, i.e.,
the example behavior of acquired robot programs. We
can observe that faster agents, i.e., e and f in Fig.7(a),
bothered to push buttons in spite of being late. In
another case, the nearest robots carried out the duty
to push buttons (Fig.7(c)). In this way, robot agents
have established an effective job separation dependent
upon the situation, and seem to achieve the greatest
happiness of the greatest number.

5 Discussion

Angeline noted that the intron emerged spontaneously
from the process of GP evolution and that this emer-



Figure 4: Acquired Behaviors (Robot Navigation)
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Figure 5: Program Sizes and Introns (Robot Navigation)

gent property was important to successful evolution
[Angeline98]. There are pros and cons to the emer-
gence of GP introns (see [EC98] and [Banzhaf et al.98]
for details). During the early and middle part of a run,
introns may have beneficial effects so that good build-
ing blocks will be able to protect themselves against
the damaging effects of crossover. On the other hand,
the exponential growth of introns (i.e., bloat) at the
end of the run is probably deleterious.

Our experimental results have shown that removing
the introns even at the earlier stage is beneficial. There
was no significant performance difference between (a)
the runs with removing introns at each generation and
(b) those with removing introns every several genera-
tions. Moreover, when the introns were removed only
at later generations, it gave poorer performance than
any other runs. Therefore, we think that the removal
of effective introns as often as possible will lead to the
success of the multi-agent learning.

The common method for controlling the tree growth

in GP is to use the parsimony pressure, i.e., GP indi-
viduals are subjected to the selective pressure against
length [Soule et al.96]. We have conducted compara-
tive experiments with this method for the above nav-
igation task. The used parsimony factor is 0.5, i.e.,
the fitness is added by the penalty of 0.5 x Tree Size.
The experimental results showed that the fitness im-
provement by the selective pressure was satisfactory
at earlier generations, but that the raw fitness value
was about 130 at the final generation, which is better
than normal GP, i.e., 140 but worse than GP with
controlling effective introns, i.e., 107 (see Fig.8(a)).
The number of successful runs was 9 out of 50 cases.
The robustness for testing data was just as good as
the normal GP. The averaged size of acquired trees
was significantly smaller by the selective pressure (see
Figs.8(b) and (c)). We have obtained the similar re-
sults with other parsimony factors. In summary, al-
though the parsimony pressure contributes to generat-
ing smaller trees, it does not necessary evolve a better
solution. This is partly because the parsimony pres-



e f
+ + + + + + + +
(a) (b)

+CV /f»_» &iy/7+
/E

A

(©) (d)

Figure 7: Experimental Results (Escape Problem)

sure sometimes control the functional codes, i.e., non-
intron parts of programs.

In this paper, we mainly describe the method of remov-
ing syntactic introns. There is another type of introns,
i.e., semantic introns [Angeline98], which are code seg-
ments that are executed but have no effect on the over-
all result. For instance, the codes (+ 0 a) and (not (not
x)) include the semantic introns. These introns can be
edited and replaced using a predefined template, such
as "double not’s” or ”zero plus” [Koza 92]. Prelim-
inary experiments have shown that editing semantic
introns did not any harm or good to our multi-agent
GP learning. This is partly due to the fact that these
introns seldom occur in our task. We will be in pursuit
of the role of these introns in our future research.

6 Conclusion

This paper proposed a controlling strategy of effec-
tive introns for multi-agent GP learning. Experimen-
tal results showed the effectiveness of our approach
in the following points: (1) the fitness transition was
improved for training, (2) the code growth was effec-
tively reduced, and (3) the robustness of an acquired
program was improved.

Our future research concern is to study this problem
on a real robot in the future. We also plan to conduct
an experiment with a more difficult problem when the
workspace is gradually changed with generations.
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