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Abstract

The interactive evolutionary computation (IEC), i.e, an evolutionary computation whose fitness
function is provided by users, has been gpplied to aesthetic areas, such as art, design and music. We
cannot aways define fitness functions explicitly in these areas. With IEC, however, the usar's implicit
preference can be embedded into the optimization system.

This paper describes a new approach to the music compostion, more precisely the compostion of
rhythms, by means of IEC. The main festure of our method is to combine genetic dgorithms (GA)
and genetic programming (GP). In our system, GA individuas represent short pieces of rhythmic
patterns, while GP individuas express how these patterns are arranged in terms of their functions.
Both populations are evolved interactively through the user's evaluaion. The integration of interactive
GA and GP makesiit possible to search for musical structures effectively in the vast search space. In
this paper, we describe how our proposed method generates atractive musica rhythms successfully.

1. Introduction

We have been developing an interactive sysemcdled * CONGA” (the abbreviation of “ composition
in genetic gpproach’ and aso the name of an African percusson), which enables users to evolve
rhythmic patterns with an evolutionary computation technique [10].

In generd, evolutionary computation (EC) has been gplied to a wide range of musica problems,
such as musicd cognition and sound synthesis. Among such problems, compostion is one of the
most typical and chalenging tasks. Music compaosition can be taken as a combinatoria optimization



in the infinite combination of meodies, harmonies and rhythms. Thus it is naturd to aoply
computationa search technique as typified by EC. Up to now, Genetic dgorithms (GA) [4] and
genetic programming (GP) [9] have been successfully gpplied to the music composition tasks [1].
For example, Biles used GA to generate jazz solo [ 7] and Johanson and Poli generated melodies by
means of GP [2].

When the EC is gpplied to the musica composition, there are three main topics to be consdered [1],
i.e., the search domain, the genetic representation, and the fitness evauation.

The firg topic is the search domain. As mentioned earlier, the musicd composition is a combinatoria
optimization problem, whose search space is bascdly unlimited, because there is an infinite
combination of melodies, harmonies, and rhythms. It is not reasonable to expect computers to
compose music like Mozart or Beethoven from scratch. Therefore, the composition must be guided
by some congtraints.

The next is the genetic code representation of music. Generally spesaking, the effectiveness of EC
search largely depends on how to represent a target task as a genetic code.

Thethird topic of congderation is the fitness evaluation of EC individuds. Because music is eval uated
based on the ambiguous human subjectivity, it is difficult to define the explicit fitness function in the

musica compaosition.

Consgdering these requests, we establish our system “CONGA”. The sdient features of our system
are asfollows.

1. Search domain: Mudcd rhythm patterns

The purpose of our system is to generate short (i.e. from 4 to 16 measures) rhythm patterns.
However we only deal with a particular subset of rhythms. In the context of this paper, the word
rhythm means a sequence of notes and rests which occur on natural pulse subdivisons of a best.
Thisis areasonable reduction of the search domain for the application of ECs.

There are a few related works in this direction. For instance, Horowitz used an |IEC to learn user’s
criteriafor evaluating rhythms and succeeded in producing one-measure long rhythm patterns [3]. To
produce longer and more intereting phrases musicdly, we have adopted unique genetic
representation described later.

2. Geneic representation: Combination of genetic algorithm and genetic programming.



Our sysem maintains both GA and GP populations and represents music with the combination of
individuas in both populations. GA individuas represent short pieces of rhythmic patterns, while GP
individuas express how these patterns are arranged in terms of their functions. In this way, we try to
express a musca dructure, such as a repetition, with the structural expresson of GP and evolve
longer and more complicated rhythms without spreading the search space.

3. Htnessfunction: User him-/herdf.

A common problem in gpplying EC to an aesthetic task is the difficulty of setting up a formd fitness
function to evauate the individuds Interactive evolutionary computation (IEC) avoids this
problem by making human users evauate each individud empiricdly (see Fig. 1) [6].

In a conventional EC, each individua is evduated by a given fitness function. On the other hand, a
user evauates individuds by him-/hersdf in an IEC. Therefore IEC can make EC techniques
applicable to subjective optimization problems without explicitly moddling the human subjective
evaudion

Some researches mentioned before adopted this IEC technique for the musical compostion [2,3,7].
Inasmilar way, our system adopts the idea of interactive evolution, which enables to generate music
on the basis of user’'s criteria. We aso implement the mechaniams to keep the consistency of humen
subjective evauation and the diversity of the genotypes.

The common difficulty in the practica use of 1EC is the human fatigue. Since a user must work with a
tireless computer to evauate each individud in every generation, he/she may wel fed pain. It is the
biggest remaining problem to reduce the psychological burden on users. In order to deal with this,

we adopt an eva uation ass stance method.

The rest of the paper is structured as follows. Section 2 shows the overdl image of our. Section 3
introduces the genetic representation. Section 4 describes user’s operation and the evauation
assgtance by the system. Section 5 shows result of severa experiments, followed by some
conclusonin Section 6.
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Fig. 1 Theframework of the interactive evolutionary computation.
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2. System architecture

Fig. 2 gives an overview of our sysem This sysem has been developed in Windows PC
environment with Borland C++ Builder. The system is based on MIDI (Musica Ingtruments Digitd
Interface) specification. MIDI is a standard interface between eectronic insruments, such as
synthesizers and samplers, and computers. Maximum MIDI library [12] is used to embed MIDI

compatibility.

Asshownin Fg. 2, GA and GP populations are displayed as grids on windows respectively. Each
cdl of the grid is associated with an individud in the correspondent population. A user can listen to
any individud by dicking the corresponding cells and give afitness vdue.

Fig. 3 shows the system architecture. Note that the genetic representation in our system contains two
populations. These are a population of GA individuas, which represent short musical phrases, and a
population of GP individuas, which represent how these short patterns are arranged in time line. The

dternation of generations occurs in these two populations based on the user’ s given fitness vaues.

We have adopted “ Multi-field user interface” [13], in which children are displayed in a separate
window insteed of replacing their parents. In addition, we have implemented the migration among
these windows. Users can migrate an individua from a digplay window to another by the drag and
drop operation. This feature provides more flexible breeding and richer diversty of genotypes by the
effects milar with theisand model in GA or GP [5].

Moreover, we have enhanced the system flexibility by introducing user-defined parameters. Users
can et the population sizes, input the length of generated rhythm patterns and sdlect timbres for
composition. Users dso can set “swing rate’ of the rhythms. These features contribute to
generating much more musica phrases. Besides this, the system can synchronize with other MIDI



sequencers, by sending MIDI time clock (MTC). If you program ameody with that externd

sequencer in advance, you can evolve rhythm patterns, which sounds good with the melodly.
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Fig. 2 The“ CONGA” system overview.
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3. Genetic Representation

3.1. Genetic Algorithm

efc,



GA individuds represent short (i.e, a haf or one measure long) multi-voice rhythm patterns.
Genaotype of GA individudsis atwo-dimensond array of integers (Fig. 4). Users can set the number
of timbres, the length of the phrase represented by an individua and the unit time resolution, eg.,
eighth or sixteenth note. Thus the user’s setting determines the Sze of arrays. Each eement of the
array standsfor the strength of the beat. This valueis caled velocity in the terminology of MIDI. The
veocity isanumber between 0 and 127, because it is represented as 4 hits.

We have introduced genetic operations listed in Tablel, consdering that they are muscdly

meaningful operations.
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Fig. 4 An example of GA individual.
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Fig. 5 An example of GP individual.

Table.l Genetic operation in GA.

Type Name Description
Crossover One-point Apply standard crossover
Crossover

Part exchange

Exchange parts for timbres among individuals

Mutation Random Apply standard mutation
Rotation Rotate the loci a random amount
Reverse Play the loci in reverse order.

Timbre exchange

Exchange timbres within an individua

3.2. Genetic Programming

GP individuals represent how the above-mentioned GA individuas are arranged in a time series.
Termind nodes are ID numbers of GA individuas. Non-termina nodes are functions, such as
repetition and reverse operations (see Fig. 5 and Table.2).




We used normd genetic operations in GP, eg. sub-tree crossover and mutation. The GP engine is
based on a revised verson of LGPC (Linear GP system in C) [11]. Linear GP is one of GP
notations, in which program structures are represented as a linear array. We have been developing
LGPC as a generd-purpose Linear GP system and showed its advantage in the speed and low
memory consumption [11]. Adopting faster system can lighten the burden imposed on users by
shortening waiting time. Moreover the feature of the low memory consumption is desirable especidly
in common PCs, which usudly have restricted memory.

Although the above representation enables structuring music sequence, the length of the expressed
musc may be problematic, i.e., the generated music can be dl different in their lengths. To ded with
this problem, we impose a congtraint upon the lengthin the following way.

A new generation is bred with a larger population size. Then, GP individuas are selected based on
the length of the phrase represented by the individud. Only individuas with lengths close to the length
given by the user in advance will be sdected and displayed to the user. In this way, we can keep the
congant length of rhythm patterns represented by diverse GP individuas without increasng
individuas, which auser must face to evaduate.

Table.2 Functions in GP.

Name Arity Description
Sequence 2 Play NODE1 and NODE2 consecutively.
Repetition 2 Repeat NODEL1 till the lengths of both child

nodes become the same.

Concatenation | 2 Play the first half of child NODEl1 and the
second half of NODE2 consecutively.

Reverse 1 Play NODEL in reverse.

Random 0 Play randomly selected node.

4. Evaluation and Alternation of generations

4.1. User operation

Aswe have stated repeatedly, the EC sdection is based on the user's evauation. Users listen to eech

individual and increase or decrease the fitness vdue accordingly. The fitness values are normdized in



the population and used in the selection process. We use the proportiona sdection with the dite
drategy.

Human subjective evauation is very ambiguous and incorsigent in generd. This tendency can be
strong, especidly when the evauation target is music. Unlike images, music cannot be displayed in
pardld. Therefore our evauation can be largely affected by the presentation order.

To compensate for this defect, we set sandard individuas for the evaluation. To be concrete, if an
individud is copied and reproduced in a generation, its fitness value is also copied from the vaue,
which a user has given in the previous generaion. The user can evauate other individuas more

conggtently with the reference to this sandard fitness vaue.

In this system, GA and GP populations are evolved separately. At firdt, the dternation of generations
is done in GA population severd times. Next, GP individuds with evolved GA gene codes are
evauated and the generation of GP population proceeds. If the user wants better GA individuds for
the GP evauation, he/she can go back to the GA population and evolveit again. This cycle continues
until a satisfactory rhythm evolves.

4.2. Evaluation Assistance

During the above-mentioned operations, the psychologica burden is not negligible to the user who
ligtens and gives a fithess vadue to each individud. This load on users is a common problem in the
|EC technique. We may reduce the population size or the number of generations in order to lighten
the burden. However, the effectiveness of EC search can be degraded for that. Thus, we need to
solve this dilemma for the more widespread applicationof |EC.

For this purpose, we have implemented an eva uation assistance method. When generations proceed,
we breed a larger number of individuas. Subsequently, each individud is evauated automatically
with the technique shown below.

1. Thereductionin GP individuas based on the length of represented rhythm (see section 3.2).

2. The reduction in GA population by learning human subjective function with a neurd network
(NN)

By these reduction schemes, we can display only individuas that mark high fitness. Accordingly,
users are expected to evauate ardatively smdler number of individuas.



The basic ideaof NN learning isfrom [2,8]. We have used a three-layered network (Fig. 6) for the
purpose of learning the human fitness function It learns through the back-propagation how a user
givesthe fitness value to a GA individud. Inputs to the NN are ements of a GA genotype and the
output is the estimated fitness value of the phrases represented by the array. By choosing only
individuas with a high NN output score, we can reduce the number of GA individuds that a user

must face to evauate.
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Fig. 6 Thediagram of a neural network, which learns user'scriteria.

5. Experimental Results

We have conducted severa evauation experiments so far. In the fird experiment, severa subjects
with different musica backgrounds and preferences used our system to make rhythms whatever they
want. Mogt of the subjects found our system performance satisfactory. In another experiment, we
gave users the theme for the compaosition, such as "rhythms sound like rock’ n'rall songs’, and then
make them compose music by our system. Fig. 7 shows atypica “rock’ n'roll rhythm” generated in
this experiment.

A couple of generated rhythms in these experiments are available from our web Ste as sound files

(URL: http:/Amaav miv tirtokyo acjp/~tokui/research/iec- musicl), some of which will be presented
at GA2000.

As for the reduction of GA population by NN, we got a postive feedback from users. It seems to
increase the probability of breeding a new generation, which reflects the user’s evaduation in the
previous generdtion. To evauate the effectiveness of this method, however, we need to andyse
experimental results more quantitatively, which will be our future work.
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6. Conclusion

In this paper, we described our research on the interactive musica composition sysem. The system
enables the interaction between EC and human beings. We have shown that the system can generate
musica phrases successfully by combining GA and GP.

Our research has two important aspects. One is to study the basic IEC scheme and another is to
develop a novd toal for the music compostion. From the firgt point view, we should make more
quantitative analyss on the effectiveness of the whole system, especidly for the evauation assstance
by the neurd network. For this purpose, we plan to conduct some psychologica experiments with
many test subjects. In another respect, we should expand the musicality of generated phrases. At
the beginning, we will embed a mechanism to handle melodies to the system.

There is a move to revise the rationship between computers and human beings in proportion as
computers become indispensable in our everyday life. We believe the IEC will be one of the most
important techniques to embed human subjectivity to the searching ability of computers. In addition,
the progressin the computer technology will bring us a novel way to make music more enjoyable and

exciting. We hope our research can contribute to this stream.

References.
[1] Anthony R. Burton and Tanya Vladimirova, Application of Genetic Techniques to Musicd
Compostion, Computer Music Journal, vol. 23, 1999.

[2] Brad Johanson and Riccardo Poli, GP-Music: An Interactive Genetic Programming System, In
Proceedings of the Third Annual Conference: Genetic Programming 1998, 1998.

[3] Damon Horowitz, Generating Rhythms with Genetic Algorithms, In Proceedings of the 12th
National Conference on Artificial Intelligence, AAAI Press, 1994.

[4] David E. Goldberg, Genetic Algorithms in Search, Optimization & Machine Learning,
Addison-Wedey, 1989.



[5] Erick Cantu-Paz, A Summary of Research on Parallel Genetic Algorithms, Technica Report,
Department of General Engineering, University of Illinois, rep.95007, 1999.

[6] Hideyuki Takagi, Interactive Evolutionary Computation - Cooperation of computational
intelligence and human KANSEI, In Proceeding of 5th International Conference on Soft
Computing and Information/Intelligent Systems, 1998.

[7] John A. Biles, GenJam: A Genetic Algorithm for Generating Jazz Solos, In Proceedings of the
1994 International Computer Music Conference, ICMC, 1994.

[8] John A. Biles, Peter G. Anderson and Laura W. Loggi, Neural Network Fitness Functions for a
Musicd IGA, In the International ICSC Symposium on Intelligent Industrial Automation and
Soft Computing, 1996.

[9] John R. Koza, Genetic Programming: On the Programming of Computer by Means of
Natural Selection, MIT Press, 1992.

[10] Nao Tokui and Hitoshi Iba, Generation of mudcd rhythms with interactive evolutionary
computation, In Proceedings of the 14th Annual Conference of JSAI (in Japanese), 2000.

[11] Nao Tokui and Hitoshi Iba, Empiricd and Statisticd Andlyss of Genetic Programming with
Linear Genome, In Proceedings of The 1999 |EEE International Conference on Systems, Man,
and Cybernetics, 1999.

[12] Paul Messick, Maximum MIDI : Music Application in C++, Prentice Hall, 1999.

[13] Unemi Tatsuo, A Design of Multi-Fidd User Interface for Simulated Breeding, In Proceedings
of the Third Asian Fuzzy System Symposium, The Korea Fuzzy Logic and Inteligent Systems
Society, 1998.



