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Abstract- We intr oducea technique that allows a real
robot to executereal-timelearning, in which GP and RL
are integrated. In our former research, we showed the
result of an experiment with a real robot “ AIBO” and
proved the technique performed better than the tradi-
tional Q-learning method. Basedon the proposedtech-
nique,wecanacquirethecommonprogramsusingaGP,
applicable to various types of robots. We executerein-
forcement learning with the acquired program in a real
robot. In this way, the robot can adapt to its own op-
erational characteristics and learn effective actions. In
this paper, we show the experimental resultsin which a
humanoid robot “HO AP-1” hasbeenevolvedto perform
effectively to solve the box-moving task.

1 Intr oduction

We canusetechniquesof machinelearningwhenapplying
a robot to achieve sometask,while appropriateactionsare
unknown in advance. In suchsituations,therobotcanlearn
appropriateactionsin a try-and-error mannerin a real en-
vironment.Well-known techniquesfor thispurposeareGe-
neticProgramming(GP)[11], GeneticAlgorithm(GA) [14]
andReinforcementLearning (RL) [17].

GPcandirectly generate programsto control therobot.
Therearemany studiesin which GP is appliedto control
realrobots[1, 19]. WecanuseaGA in thecombinationwith
a Neural Network (NN) to control robots[14]. Theevalu-
ation of real robots demands a significant amount of time
becauseof their mechanical actions.Moreover, we have to
repeattheevaluationsof many individualsoverseveralgen-
erationsin bothGPandGA. For example,Anderssonet al.
spent15 hours for theevaluationof 111generations to ac-
quire a galloping behavior by GP [1], andFloreanoet al.
spent10 daysfor 240generations to evolve the motionof
goingtowarda light sourceby GA with NN [5]. Therefore,
in mostof thesestudies,thelearning wasconductedthrough
simulationandtheresultswereappliedto realrobots.

RL is capableof finding optimal actionsfrom interac-
tionswith theenvironment.To obtainoptimalactionsusing
RL, it is necessaryto repeatlearningtrials time andagain.
The enormouslearningtime of the task with a real robot
is a critical problem. Accordingly, moststudiesdealwith
theproblems of receiving animmediaterewardfrom anac-
tion [10], or loading theresultslearned with asimulatorinto

a realrobot[2].
Learning by simulationrequires the simulatorto repre-

sentagents,theenvironment andtheirinteractionsprecisely.
However, thereare many tasksthat are difficult to make
thesimulatorprecise.Learning with animprecisesimulator
doesnotleadtoeffectiveperformancein arealenvironment.
Furthermore,therearecertainvariationsdueto minorerrors
in themanufacturing processor to changeswith time even
if the real robotsaremodeledexactly the sameway. The
above approach,i.e., to learnwith a simulatorandto apply
theresulttoarealrobot,haslimitations.Therefore,learning
with a realrobot is unavoidablein order to acquireoptimal
actions.

Now thatvariouskindsof robotshavebeendeveloped,it
is veryimportant to carryouta taskby employing thosedif-
ferent robots. In thiscase,it will take muchlonger if weal-
low eachdifferent robot hasto learnthetaskindependently.
On the contrary, we canusesomegeneral knowledgefor
thecommon partof various robots andthenfine-tunespe-
cific parametersfor a particularrobot, thereby establishing
amoreeffective learningscheme.

In ourpreviouspaper [8], we haveproposeda technique
thatallowsarealrobot toexecutereal-timelearning in which
GP andRL areintegrated. Our technique doesnot needa
precisesimulatorbecauselearning is donewith arealrobot.
In otherwords,theprecision requirementcanbeeasilymet
if the task is only expressedin a proper way. As a result
of this concept, we cangreatlyreducethecostto make the
simulatorhighly precise.SinceGPcangenerateprograms,
our technique hasthe possibility of producingmore com-
plex behaviors thanthereactivebehaviors of RL.

Basedon theproposedtechnique,we canapplythepro-
gram, which has beenacquired with the samesimulator
via GP as describedin [8], to different types of robots.
The program will adaptto the operational characteristics
of real robotsand learn effective actions. In our former
research, we useda robot “AIBO” (an entertainment four-
leggedrobot by SONY)andprovedtheeffectivenessof our
proposedtechnique. In this research, we perform anexper-
imentwith a humanoid robot “HOAP-1” (manufacturedby
FujitsuAutomation Limited). We provide theexperimental
resultsto confirmtheadaptationability of ourmethodology.

This paperis organizedasfollows. Thenext sectionex-
plainsthe taskof theexperiment.After that,Section3 ex-



Figure 1: The robot “HOAP-1”, the box and the goal
marker.

Table1: Thespecificationof therobot “HOAP-1”.
Height about 48cm
Weight about 6kg,including 0.7kg of battery

JointMobility 6DOF/foot ��� , 4DOF/arm ���

Sensors

Jointangle sensor
3-axis acceleration sensor

3-axisgyrosensor
Foot loadsensor

plainsour proposedtechnique andsettingsin this experi-
ment. Section4 presentsanexperimentalresultwith a hu-
manoid robot “HOAP-1” andSection5 discussesresultsof
comparisonand future research. Finally, a conclusion is
givenin Section6.

2 Task Definition

The task is the box-moving task, the goal of which is to
move a box to a pre-defineddestinationarea.It is thesame
asourpreviousworkswith AIBO [8].

Therobot usedin thispaperis “HOAP-1” whichis man-
ufacturedby FujitsuAutomationLimited. It is a humanoid
of 20 degreesof freedom (Fig. 1). Thespecificationof the
robot is shown in Table1. This robot makesanactionfrom
a command givenby a hostcomputer(RT-Linux operating
system).It is alsoequippedwith aCCD camerain its head,
whichprovidesimagedatafor thepurposeof environmental
understanding.

Thetargetobject,i.e., thebox, haswheelsonthebottom
so that it canbe easilypushed. Note that the force power
of a humanoid’s armis soweakthat it hasdifficulty carry-
ing something heavy. Thus, we have chosento fix thearm
positionandusethepushactionfor thesake of simplicity.
The goal positionis marked with a red marker. Whenthe
humanoid haspushedthe box in front of this red marker,
we regardthetaskhasbeenachievedsuccessfully.

Moving thebox to anarbitrarypositionis generally dif-
ficult. The moving behavior is achieved when the robot
pushesthebox with its kneeswhile walking. A humanoid
robot is quitedifferent from AIBO in thesensethatit stands

GP loop
(Population Learning)

Create initial individuals

Evaluate individuals

Selection

Reproduce individuals
(crossover and mutation)

Reinforcement Learning
(Individual Learning)

Figure2: Theflow of thealgorithm.

on onefoot while walking, during which its direction may
bedivertedunexpectedlywith somedisturbances.In partic-
ular, if thebox is in front of oneleg, theboxmaybepushed
forward or sometimes moved outsideof the leg area. It is
unpredictable becauseof the physical interactions or their
frictions. It is very difficult to constructa precisesimulator
whichexpressesthis movement.Therobot must,therefore,
learntheseactionsin a realenvironment.

3 Real-timeAdaptation Technique

In our former research[8], we proposeda technique that
integratesGP andRL. The algorithm is shown in Fig. 2.
This technique enablesus (1) to speedup learning in real
robot and (2) to adapt to a real robot using the programs
acquired in a simulator.

Theproposedtechnique consistsof two stages(GPpart
andRL part).

Step1. Carryout GPin a simplifiedsimulator, andformu-
lateprogramsthathave thestandard actions required
for executinga task.

Step2. Conduct individual learning(= RL) after loading
theprogramsobtainedin Step1 above.

In thefirst stepabove,theprogramsfor thestandardactions
requiredof arealrobot to executeataskarecreatedthrough
theGPprocess.Thelearning processof RL canbespeeded
upin thesecondstepbecausethestatespaceis dividedinto
partialspacesunder thejudgmentstandards obtainedin the
first step.Moreover, preliminary learningwith a simulator
allows usto anticipatethata robot performstarget-oriented
actions from thebeginningof thesecondstage.



3.1 RL part conductedby the real robot

As youcanwell imagine,ahumanoid robot is verydifferent
from therobot AIBO usedin our former research.Thedif-
ference includesnot only theshapesof therobots (onehas
two legs andtheotherhasfour legs),but alsothe viewing
angleof CCD cameraandthedynamics of behaviors.

However, our techniquecantreattheprogramsfor both
AIBO andHOAP-1 in thesamemanner becausethefunda-
mentalactions(i.e., forwardmoving andturning) required
for the task are common to both of them. Thoseactions
arerepresentedin our simplified simulator. GP is applied
by usingthesimplesimulatorsoasto evolvesuchcommon
programs(thedetailsof GParedescribed in Sect.3.2). At
thestageof reinforcementlearning, theeffectiveadaptation
is doneaccording to theoperationalcharacteristicsof apar-
ticular robot.

3.1.1Action set

The robot can choose one of the seven actions: Forward
(6 steps),Left-turn, Right-turn, Left-sidestep(onestepto
the left), Right-sidestep(one stepto the right), the combi-
nationof Left-turnandRight-sidestep, andthecombination
of Right-turn andLeft-sidestep.However, theseactionsare
far from ideal.For instance,therobot tends to movea little
backward duringtheRight-turn or Left-turn. Thus,it is nec-
essaryfor therobotto adaptthemotion characteristics.As
mentionedbefore,although therobot hasanarm,its power
is soweakthatwe cannot rely on it to move thebox. The
robot carriestheboxto thegoal onlyby thesesevenactions.

As is often the casewith a real robot, any actiongives
riseto someerror. For example, it is inevitably affectedby
the slightestroughnessof the floor or the friction change
dueto thebalanceshift. Thus,eventhoughtherobot starts
from the samepositionunderthe sameconditions, it does
notnecessarilyfollow thesamepath.

In addition, every action takes approximately ten sec-
onds. It is, therefore, desirablethat the learning time be
asshortaspossible.

3.1.2StateSpace

Thestatespaceis structuredbasedonpositions from where
the box and the goal marker canbe seenin the CCD im-
age,asdescribed in [8]. This recognition is performedafter
everyaction.

Figures3(a)and3(b)aretheprojectionsof theboxstate
andthegoalmarkerstateonthegroundsurface.Thesestate
spacesareconstructedfrom roughdirectionsandroughdis-
tancesof objects.Weusedfour levelsof thedistancefor the
box (i.e., “proximate”, “near”, “middle”, “f ar”) and three
levelsfor thegoalmarker (“near”, “middle”, “f ar”).

We have to pay specialattentionto the positionof the
robot’s legs. Depending on the physical relationship be-

proximate
center

proximate
left

far center
far left far right

middle center

middle left middle right

near center
near left near right

proximate
right

lost into left lost into rightlost

left
leg

right
leg

proximate
straight rightproximate

straight left

(a) Statesof thebox.

far center

far left
far right

middle center

middle left middle right

near center

near left near right

lost into left lost into right
lost

left
leg

right
leg

(b) Statesof thegoalmarker.

Figure 3: Statesin real robot. Thefront of therobot is up-
sideof thesefigures.

tweentheboxandlegsof therobot, theboxmoves forward
or deviatesto a side.If anappropriatestatespaceis notde-
fined,thentheMarkov propertyof theenvironment, which
isapremiseof RL, cannot bemet;therefore,optimal actions
cannot befound. Consequently, we havedefined the“prox-
imatestraightleft” andthe“proximatestraightright” states
at thefrontalpositionsof thefront legs.Thesestatesdonot
exist in thesimulationbecausethe interactionbetweenthe
legsof therobot andthebox is verydifficult to simulate.

The stateis definedto be “lost” whenthe robot misses
theboxor thegoalposition.RememberthattheCCD cam-
eraof ourrobot is fixedin aforward direction, notmovable.
As a resultof this, the robot oftenmissesthe box or goal.
To recover from thismissing,weusethefollowing strategy.
The robot records the missingdirection (i.e., left or right)
whenit hasmissedthebox or goal. Therobot canusethis
informationfor a certainnumber of stepssoasto generate
the “lost into left” or “lost into right” states,which means
that thetarget haddisappearedin eithertheleft or right di-
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Figure4: Statesfor box andgoal marker in the simulator.
The areabox ahead is not the statebut the placewhere
if box ahead executesfirst argument.

rectionin thelastfew steps.
As shown in Figs.3(a)and3(b), thereare17 statesfor

thebox and14 statesfor thegoalmarker. Thestateof this
environment is representedwith theircrossproduct. Hence,
thereare238statesin total.

When the goal marker is “near center”and the box is
nearfront of therobot (i.e.,oneof thestatesin “box proxi-
matecenter”,“box proximatestraightleft”, “box proximate
straightright”, and“box nearcenter”), therobot recognizes
thatit hascompletedthetask.

3.2 GP part conductedby the simulated robot

Thesimulatorin our experimentusesa robotexpressedas
a circle on a two-dimensionalplaneaswell asa box anda
goalmarkerfixedontheplane.Thetaskis completedwhen
therobot haspushedtheboxforwardto thegoalmarker[8].

We definedthreeactions(“move forward”, “turn left”,
“turn right”) in an actionset. The statespacein the sim-
ulator is simplified as shown in Fig. 4. While actions of
thereal robot arenot ideal, thesimulatoractionsareideal,
i.e., “move forward” actionmovesthe robot truly straight-
forward and“turn left” actionpurely turnsleft. Of all the
states,the “lost into left” and “lost into right” statesare
similar to thoseusedby a real robot. Thesearethe states
producedwhenthe box or the goal is not in view andthe
preceding stepis eitherat theleft or at theright.

Suchactions with a statedivision are similar to those
for a real robot, but arenot identical. In addition, physical
parameterssuchasboxweightandfrictionarenotmeasured
nor is theshapeof therobot takeninto account. Therefore,
this simulatoris sosimpleandit is possibleto build it with
low cost.

The operational characteristics of the box expressedin
thesimulatorareasfollows:

1. Theboxmovesforwardif it comesin contactwith the
front of therobot andtherobot movesahead1.

2. If the box is nearthe centerof the robot when the
robot turns,thenthe box remains nearthe centerof

1Thismeanstherobot is ableto pushthebox with theForwardaction.
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Figure 5: Action nodes pick up a real actionaccording to
the � -value of a realrobot’s state.

therobot aftertheturn2.

Weusedaterminal set=
�
move forward,turn left,

turn right � anda function set=
�
if box ahead,

box where, goal where, prog2 � . The above termi-
nalnodescorrespondto the“moveforward”, “turn left”, and
“turn right” actionsrespectively in thesimulator. Thefunc-
tional nodesbox where andgoal where arethe func-
tionsof six arguments,andthey execute oneof thesix ar-
guments,depending on the statesof the box andthe goal
marker asseenthrough the robot’s eyes(Fig. 4). Further
detailsof thesettingof GParedescribedin [8].

3.3 Integration of GP and RL

Reinforcementlearning isexecutedtoadaptactionsacquired
via GP to the operational characteristicsof a real robot.
Moreprecisely, thisisaimedatrevisingthemove forward,
turn left andturn right actionswith thesimulator
soasto achievetheiroptimalactionsin a realenvironment.

Weapplied���	��
 -learningmethodto arealrobot. ���	��
 -
learning is a variantof � -learning andcanlearnmoreef-
ficiently thannormal � -learning. This methodrecords the
traceof visited statesandactionstaken. Whena temporal
difference(TD) erroroccurs, � -valuesinvolvedin thetrace
areassignedcreditor blamefor theerror. We implemented
“naive ���	��
 ” with a replacing tracedescribedin [17].

A � -table,onwhich � -valueswerelisted,is allocatedto
eachof themove forward,turn left andturn right
actionnodes.Thestatesusedonthe � -tablesarethosefor a
realrobot. Therefore,actualactionsselectedwith � -tables
can vary dependingon the state,even if the sameaction
nodesareexecutedby a real robot. Figure5 illustratesthe
abovesituation.

For the initialization of the � -table, we allow a spe-
cific actionto be chosenmore frequently. For instance,in
caseof the � -tablefor move forward, the Forward ac-
tion tendsto beselectedmoreoftenasarethe � -tables for
turn left andturn right. However, whenthebox is

2This meansthat the robot is able to changethe direction of the box
only by Left-turn andRight-turn actions.



Table2: Action nodesandtheir selectablerealactions.
actionnode realactionswhich � -table canselect.

move forward Forward��
, Left-sidestep, Right-sidestep
turn left Left-turn ��
, Left-turn + sidestep���, Left-sidestep
turn right Right-turn ��
, Right-turn+ sidestep���, Right-sidestep

��
 Theactionwhich � -tableprefersto select.
��� Preferredactionsif the box is in a stateof “proximatecenter”,“near

center”,“middle center”,or “f arcenter”.

in astateof “proximatecenter”,“nearcenter”, “middle cen-
ter”, or “f arcenter”, thentheactionsfor thecombination of
Left(Right)-turn andsidestepare chosenwith greaterfre-
quency. This maintainsconsistency with the simulatorre-
sults. Becauseturn actionsarealwaysaccompaniedby a
small backwardmotion,whenthe robot takesan actionof
thecombinationof turn andsidestepin oneof thesestates,
then the next stateremains to be the same. In the imple-
mentation, the initial valueof 0.0001 wasenteredinto the
respective � -tables so that preferredactionswereselected
for each � -table,while 0.0 wasenteredfor otheractions.
The robot canlearnoptimalactionsin this settingbecause
� -valuesconverge regardlessof the initial value[17]. The
actionswhich arepreferred to selecton eachactionnode
aresummarizedin Table2. In addition, each� -table is ar-
ranged to setthe limits of selectableactions.This refersto
theideathat, for example, “turn right” actionsarenot nec-
essaryto learnin theturn left node.

Sometranslationsof statesarerequired to run a GP in-
dividual in the real robot. We translatedthe states“prox-
imate straight left” and “proximate straightright”, which
exist only in therealrobot, into a “center” statein function
nodes of theGP. Whenthebox is in the“proximatecenter”
statefor the real robot, if box ahead node executes its
first argument.

As for ���	��
 -learningparameters, the rewardwassetto
be1.0whenthegoalwasachievedand0.0for otherstates.
We chosethe learning rate ������� � , the discountfactor� ����� � andthe trace-decay parameter ������� � . These
parametersaredeterminedfrom preliminaryexperiments.

4 Experimental Resultswith a humanoid robot
HOAP-1

An experimentwasperformedusinga humanoidrobot. In
thisexperiment,thestartingstatewaslimited to anarrange-
mentin which boththebox andthegoal positionwerevis-
ible. This was justified by the following reason. Even if
learningis performedfrom anarrangementin which either
the box or the goal is “lost”, it cannot be predictedthat
thebox or goal positionwill subsequently becomevisible.
Thus,therewill besubstantialvariations in statetransition,
anda long timewill berequiredfor thelearning.

As a single trial, the learningwas performeduntil the
robot protrudedfrom thefield of theexperimentor thepre-
determined number of steps(i.e., 30 steps)wasexceeded.
The learningin the real robot wasperformedin about six
hours.

Just at the start of learning: The robot succeededin
completing thetaskin many situations.This is becausethe
robot actedrelatively well usingtheprogramevolvedwith
thesimulator, although theoperationalcharacteristicdiffers
from AIBO.

However, therobot took a long time in somesituations.
This proves that the acquired actionswith the simulator
are not always optimal in a real environmentbecause of
the differencesbetweenthe simulatorand the real robot.
Thesedifferencesnecessitatethe statesadded to the box
for therealrobot, i.e., “proximatestraightleft” and“proxi-
matestraightright”. Theoperationalcharacteristicsin these
statesareunknown to therobot before learning.

After six hours (after about 1800steps) Noticeablyim-
provedactionswereobserved. Therobot selectedappropri-
ateactionsin thesituations.Fig. 6 shows sucha successful
actionsequence. It completedthe taskmuchfasterthanit
did beforelearning.

Thesameimprovement hasbeenobserved asdescribed
in our previousstudieson AIBO [8]. This underscoresthe
effectivenessof ourapproach.SinceGPsucceededin learn-
ing somegeneral knowledge,in the sensethat its usageis
not limited to aparticularrobot, thenit is applicable to both
AIBO andHOAP-1.

5 Discussion

5.1Measurementof Impr ovement

We performedthequantitative comparisonsoasto investi-
gatehow efficiently therobot performedafterlearning. For
this comparison,we randomly selectedsix situations:four
situationsareselectedfrom statesadded for therealrobots
(“box proximatestraightleft” and“box proximatestraight
right”), andtheothertwo areselectedfrom different states.
We measuredthe number of stepsin completing the task
both beforeand after learningin thesesituations. These



Figure6: Successfulactionseries.Thegoalis at thebottom
centerof eachfigure.

testsareexecuted in a greedypolicy in order to insurethe
robot alwaysselectsthebestactionin eachstate.

Table3 shows the results.After the learning, the robot
completedthe taskmoreefficiently in four out of six situ-
ations(representedby bold font in the table) thanbefore.
In particular, greatimprovementwasobserved in situation
#2. Theseresultsproveourtechniqueworkedverywell and
thentherobots learnedefficientactions.

Thereis anotherpoint to consider in termsof efficiency.
Wehadto dealwith the“state-actiondeviation” problem[2]
whenapplying ���	��
 -learningto thisexperiment.Thisis the
problem thatoptimal actionscannot beachieveddueto the
dispersionof statetransitions. Moreprecisely, if thestateis
composedonly of theimages,thereareoftennoremarkable

Table3: Comparisonof thenumberof stepsbetweenbefore
andafterlearning.

#. state before after
situation notation learning learning

Box: proximatestraightright
1 GoalMarker: middleright 7.3 8.5

Box: proximatestraightright
2 GoalMarker: middleleft 10.7 5.6

Box: proximatestraightleft
3 GoalMarker: middleright 16.3 12.8

Box: proximatestraightleft
4 GoalMarker: far right 14.0 15.3

Box: nearleft
5 GoalMarker: far center 14.7 12.3

Box: middleright
6 GoalMarker: far center 11.3 10.9

differencesin imagevalueswithin anaction.As a solution
to thisproblem,thesameactionshouldberepeateduntil the
currentstatechanges. The � -valuesareupdatedwhenthe
statechanges(for details,see[8]).

In ���	��
 -learningaswell as in the usualreinforcement
learning, theagentlearnsoptimal actionsin orderto max-
imize the sumof the discounted rewardswhich it receives
until completing thetask[17]. Thesum,which is calledas
expecteddiscountedreturn, canbewrittenasfollows:

�! �
"
#�$&%

� #('  *) # ) 
,+ (1)

where- is a current time step,. is the last time step,� is
the discount factor(�0/ � /21 ). '  *) # ) 
 meansa reward
received 3�451 time stepsin thefuture. In this experiment,
therewardis definedas

' �617� � only whenthetaskis com-
pleted, otherwise

' �8��� � . In thesituation,theequationcan
bewrittensimplyas:

�  � � " � (2)

This forces the agentto minimize . (i.e., the number of
steps)in achieving thetask. Thestepis thestatetransition
becauseof thetreatmentof “state-actiondeviation”. There-
fore, we alsohave to compare thecountsof thestatetran-
sitionsin completing the tasksoasto investigatehow effi-
ciently therobotbehaves.

Table4 shows thecountsof statetransitionsin thesitua-
tions.This tableillustratesthattheperformance in situation
#4 was improved after learning in termsof the countsof
statetransitions.This is evidence thatthereal-timelearning
processof our techniqueis veryeffective.

In situation#1, the unpredictablemovementof thebox
was observed many times. This unpredictability resulted
in the longerconvergence,which meansthat it took much
longer to learn.



Table4: Comparison of thecounts of statetransitions.
#. situation beforelearning afterlearning

1 7.0 8.0
2 10.3 4.0
3 16.0 12.5
4 14.0 13.5
5 14.7 8.3
6 10.3 9.9

Thenumberof stepsdid notnecessarilybecome smaller
after learningin situation#4, whereasthe number of state
transitionsbecamesmaller. Onereasonseemsto bethatthe
divisionof thestatespaceis notappropriate.Sincethedivi-
sionis fixedduring �9�	��
 -learning, we cannotexpect much
improvement in caseof theincorrectstatespacedivision.

5.2 RelatedWorks

Therearemany studiescombining evolutionary algorithms
andRL [13, 3]. Although the approachesdiffer from our
proposedtechnique, we have seeseveral studiesin which
GP andRL werecombined [7, 4]. With thesetraditional
techniques,Q-learning wasadopted asa RL, andan indi-
vidual of GPrepresentedthestructure of thestatespaceto
besearched.It is reportedthat its searchingefficiency was
improved in QGPmethod[7], compared to the traditional
Q-learning. Thetechniquesusedin thesestudies,however,
arealsoa type of population learning usingnumerousin-
dividuals. RL mustbe executed for numerousindividuals
in thepopulationbecauseRL is insidethe GP loop. A in-
ordinateamount of time would be required for learning if
thewholeprocesswasdirectlyappliedto a realrobot. As a
result,nostudiesusingthesetechniqueshavebeenreported
with a realrobot.

Noisein simulatorsareoftenessentialto overcomethe
differencesbetweena simulatorandrealenvironment[16].
Therobot whichlearnedwith ourtechnique,however, showed
sufficient performancein thenoisy realenvironment,even
though therobot hadlearned in anidealsimulator. Onerea-
son seemsto be that the coarse statedivision can absorb
theimageprocessingnoise.We planto conductacompara-
tiveexperimentof therobustnessproducedbyourtechnique
with thatby noisysimulators.

As describedin Sect.5.1, it seemsthat the division of
the statespaceis not appropriatein somesituations. It is
difficult for the robot to improve the actions in suchsitua-
tions because the division is fixed in the learning process.
Takahasiet al. [18] proposedtwo methodsof segmenting a
statespaceautomatically. In thefirst method,therealrobot
moves in its environment andsamplesdata. After that, it
segments a statespaceconstructinglocal modelsof inputs.
They pointed out that the methodrequires uniformly sam-
pleddatato constructanappropriatestatespace.Therobot

in our experimenttakesabouttenseconds in oneaction.In
this condition, uniform samplingis not reasonablebecause
it takes an enormousamount of time. Although the sec-
ondmethodsegmentsthestatespaceincrementally on-line,
it alsoseemsto require samplingmany datato construct a
sufficient statespace.It maybetime-consumingfor a real
robot, but it is still aninterestingapproach.

We usedseveral pre-defined actionsfor the humanoid.
This is a shortcutto investigate the applicability of evolu-
tionary methods to suchhigh-level functions as solving a
task. In contrast, thereare relatedstudiesto evolve low-
level functionsof ahumanoid. Nordinetal. havedeveloped
ahumanoid robot “ELVIS” [15]. Thesoftwareof this robot
is built mainly on GP. They experimentedin the evolution
of stereoscopicvision [6] andsoundlocalization[9]. They
alsoreportedtheresultof ahand-eyecoordination[12].

5.3Futur eResearches

We choseonly several discreteactionsin this study. Al-
though this is simpleandeasyto use,continuous actions
will be more realistic in otherapplications. In that situa-
tion, for example, “turn left in 30.0 degrees”at the begin-
ning of RL canbe changed to “turn left in 31.5 degrees”
after learning, dependingon theoperationalcharacteristics
of the robot. We plan to conduct an experimentwith such
continuousactions.

We intendto apply the technique to morecomplicated
taskssuchas the multi-agent problem. It might be possi-
ble to handle a multi-agent taskwith heterogeneousrobots
by extending our approach. For this purpose,we use a
simulation-basedlearning to acquire thecommon programs
applicableto various typesof robots. After that,realrobots
aresupposedto learntheir effective actionsin spiteof their
differentoperational characteristics.This may be possible
while they arecarryingoutacooperativetaskin areal-world
situation.

Another extensionis to adaptthesimulationparameters
or modify the statespaceby using the information avail-
able from a real environment. The simulatortuning will
require thefeedbackprocessasdescribedin dottedlinesin
Fig. 2. This will enableGP to evolve moreeffective pro-
grams. Note that programsevolved by GP cannot be run
without any statespace.However, wecangivearoughstate
spaceinitially andthenmodify it gradually according to the
robot’s characteristics,which will establishmore effective
learning scheme.

6 Conclusion

Wehave introducedareal-timeadaptation techniqueto real
robots. This approachis basedon our previously proposed
method with AIBO. Weappliedthesameevolved programs



to ahumanoid robot.Weconfirmedthat,after6-hour learn-
ing, the effective adaptation was establishedaccording to
therobots’operationalcharacteristicssoasto solvethetask
effectively. Our approachwassuccessfulin acquiring the
common program, which will be applicable to heteroge-
neous robots.
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