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Abstract- We intr oduce a technique that allows a red
robotto executer eal-timelearning, in which GP and RL
are integrated. In our former reseach, we showed the
result of an experiment with a real robat “AIBO” and
proved the technique performed better than the tradi-
tional Q-learning method. Basedon the proposedtech-
nigue, we canacquirethe commonprogramsusinga GP,
applicable to various types of robots. We executerein-
forcementlearning with the acquired program in ared
robot. In this way, the robot can adapt to its own op-
erational characteristics and learn effedive actions. In
this paper, we show the experimental resultsin which a
humanoidroba “HO AP-1" hasbeenevolvedto perform
effectively to solve the box-moving task.

1 Intr oduction

We canusetechniqiesof machingearningwhenapplying
aroba to achieve sometask,while appiopriateactionsare
unkrown in adwarce. In suchsituationstherobotcanlearn
appr@riate actionsin atry-ard-erra mannerin areal en-
vironment.Well-known techniquesfor this purpseareGe-
neticProgamming(GP)[11], GeneticAlgorithm (GA) [14]
andReinforcement_earring (RL) [17].

GP candirectly generge progiamsto contiol the robot.
Thereare mary studiesin which GP is appliedto contrd
realrobotg[1, 19]. We canuseaGA in thecombnationwith
a Neurd Network (NN) to cortrol robots[14]. The evalu-
ation of real robots demand a significart amaunt of time
becausef their mechaital actions.Moreover, we have to
repeatheevaluaionsof mary individualsover severalgen-
erationsn bothGP andGA. For exanple, Andeissonetal.
spentl5 hous for the evaluation of 111 generatiosto ac-
quire a gallogng behaior by GP [1], and Floreanoet al.
spent10 daysfor 240 generatias to evolve the motion of
goingtowardalight sourceby GA with NN [5]. Therefae,
in mostof thesestudiesthelearnirg wascondictedthrowgh
simulationandtheresultswereappliedto realrobots.

RL is capableof finding optimal actionsfrom interac-
tionswith theervironment.To obtainoptimalactionsusing
RL, it is necessaryo repeatiearningtrials time andagain.
The enomouslearningtime of the taskwith a real roba
is a critical problem. Accordngly, moststudiesdealwith
the problens of receving animmediaterewardfrom anac-
tion [10], or loadirg theresultdearnal with asimulatorinto

arealrobot[2].

Learring by simulationrequres the simulatorto repie-
sentagentstheervironmen andtheirinteractiongprecisely
However, thereare mary tasksthat are difficult to make
thesimulatorprecise Learring with animprecisesimulator
doesnotleadto effective performarcein arealervironmen.
Furthermore therearecertainvariatimsdueto minorerrors
in the manufduring processor to changeswith time even
if the real robotsare mockled exactly the sameway. The
above apprach,i.e., to learnwith a simulatorandto apgy
theresultto arealrobot, haslimitations. Theefore learnirg
with arealroba is unavoidablein order to acquireoptimal
actiors.

Now thatvariouskindsof robotshave beendeveloped,it
is veryimportari to carryoutataskby employing thosedif-
ferert robds. In this casejt will take muchlongerif we al-
low eachdifferert robot hasto learnthetaskindepemnlently.
On the contray, we canusesomegeneal knovledgefor
the comma part of various robas andthenfine-tunespe-
cific paranetersfor a particularrobot, therely establishing
amoreeffective learningscheme.

In our previous pager [8], we have propsedatechniqe
thatallowsarealrobd to executereal-timelearnirg in which
GP andRL areintegrated. Our technque doesnot needa
predsesimulatorbecausdearnirg is donewith arealrobd.
In otherwords,the predsion requilementcanbe easilymet
if the taskis only expressedn a proper way. As a result
of this concept, we cangreatlyredice the costto make the
simulatorhighly precise.SinceGP cangererateprograms,
our technige hasthe possibility of producingmore com-
plex behaiors thanthereactve behaiors of RL.

Basedon the proposedtechnique, we canapplythe pro-
gram which hasbeenacquied with the samesimulator
via GP as describedin [8], to differert types of robots.
The program will adaptto the opeational charactestics
of real robotsand learn effective actions. In our former
researchwe useda roba “AIBO” (an entertainrent four-
leggedroba by SONY) andprovedthe effectivenessof our
proposedtechniqe. In this researchwe perform anexper
imentwith a humarid roba “HOAP-1" (mandacturedby
Fujitsu Automatia Limited). We provide the experimental
resultsto confirmtheadapationability of ourmethoddogy.

This paperis organizedasfollows. Thenext sectionex-
plainsthe taskof the experiment. After that, Section3 ex-



Figure 1: The robot “HOAP-1", the box and the goal
marker.

Tablel: Thespecificatiorof therobot “HOAP-1".

Heigh abou 48cm
Weight abou 6kg,including 0.7g of battery
JointMobility 6DOF/fomot x2, 4DOF/armx2
Jointande sensor
3-axis acceleratia sensor

Sensors X

3-axisgyrosensor

Footloadsensor

plains our proposedtechnique and settingsin this experi-
ment. Section4 presentsan experimentalresultwith a hu-
manad roba “HOAP-1" andSection5 discussesesultsof
comprisonand future research Finally, a conclwsion is
givenin Section6.

2 Task Definition

The taskis the boxmoving task, the god of which is to
move a boxto a pre-cefineddestinatiorarea.lt is the same
asour previousworkswith AIBO [8].

Theroba usedin this papetis “HOAP-1" whichis man-
ufactued by Fujitsu Automation Limited. It is a humaroid
of 20 dggreesof freedan (Fig. 1). The specificatiorof the
roba is shavn in Tablel. This robot makesanactionfrom
acommau givenby a hostcomputer (RT-Linux opeating
system) .t is alsoequippedwith a CCD camerdn its head,
which providesimagedatafor the purposeof ervironmernal
undestanding

Thetargetobject,i.e.,thebox, haswheelsonthebottom
sothatit canbe easilypushed Note that the force power
of a humanoid’s armis soweakthatit hasdifficulty carry-
ing sometling heary. Thus, we have choserto fix thearm
positionandusethe pushactionfor the sale of simplicity.
The goal positionis marked with a red marker. Whenthe
humanoid haspushedthe box in front of this red marler,
we regardthetaskhasbeenachiezedsuccessfully

Moving theboxto anarbitrarypositionis gererally dif-
ficult. The moving behaior is achieved when the roba
pusheghe box with its kneeswhile walking. A humarmid
roba is quitedifferent from AIBO in thesensehatit stands
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Figure2: Theflow of thealgorithm.

on onefoot while walking, during which its direction may
bedivertedunexpectedlywith somedisturbares.In partic-
ular, if theboxis in front of oneleg, thebox maybe pushel

forward or sometime moved outsideof the leg area. It is

unpredictalbe becauseof the physical interadions or their
frictions. It is very difficult to corstructa precisesimulator
which expresseghis movement.Theroba must,therebre,
learntheseactionsin arealervironmert.

3 Real-time Adaptation Technique

In our former research8], we proposeda technigie that
integratesGP and RL. The algoiithm is shovn in Fig. 2.
This technique enablesus (1) to speedup learnirg in real
robot and (2) to adap to a real roba usingthe progams
acquredin asimulator

The propasedtechniqe consistsof two stageqGP part
andRL part).

Stepl. CarryoutGPin asimplifiedsimulator andformu-
late programsthathave the standad actiors requirel
for executingatask.

Step2. Conduet individual learning (= RL) after loading
theprogamsobtairedin Stepl above.

In thefirst stepabove, the programsfor the standardactions
regured of arealroba to execue ataskarecreatedhrough

theGP process.Thelearnirg processof RL canbespeedd

upin the secondstepbecausehe statespaces dividedinto

partialspacesincer thejudgmentstandard obtanedin the
first step. Moreover, preliminary learningwith a simulator
allows usto anticipatethata robot perfomstarmget-orientel

actiors from the beginning of the secondstage.



3.1RL part conductedby the red robot

As youcanwell imagire,ahumarid roba is very different
from therobot AIBO usedin ourformer researchThedif-
ferene includesnot only the shapef therobas (onehas
two legs andthe otherhasfour legs), but alsothe viewing
angleof CCD cameraandthedynanics of behaiors.

However, our technque cantreatthe programsfor both
AIBO andHOAP-1 in the samemanrer becausehe funda-
mentalactions(i.e., forward moving andturning requred
for the task are comnon to both of them. Thoseactions
arerepiesentedn our simplified simulator GP is applied
by usingthe simplesimulatorsoasto evolve suchcomnon
progams(the detailsof GP aredescriledin Sect.3.2) At
the stageof reinforcementiearning the effective adapation
is dore according to the opeationalcharactestics of apar
ticularroba.

3.1.1Action set

The robot can chocse one of the seven actions: Forward
(6 steps),Left-turn, Right-turn Left-sidestep(one stepto
the left), Right-sidestef{one stepto the right), the combi-
nationof Left-turnandRight-sidestepandthe combiration
of Right-tun andLeft-sidestepHowever, theseactionsare
farfrom ideal. For instancetherobot tends to move alittle
backward duringtheRight-turn or Left-turn. Thus,it is nec-
essanyfor therobotto adaptthe motion characteristicsAs
mentiored befae, althowgh theroba hasanarm,its power
is soweakthatwe canna rely onit to move thebox. The
roba carriestheboxto thegod only by thesesevenactions.

As is oftenthe casewith a realrobd, arny actiongives
riseto someerror For examge, it is inevitably affectedby
the slightestrougmessof the floor or the friction change
dueto the balanceshift. Thus,eventhoughthe robot starts
from the samepositionunderthe samecondtions, it does
notnecessarilyollow the samepath.

In addtion, every action takes appoximately ten sec-
onds. It is, therefae, desirablethat the learnirg time be
asshortaspossible.

3.1.2State Space

Thestatespacds structurecbhasecdon positiors from where
the box andthe god marker canbe seenin the CCD im-
age,asdescribé in [8]. Thisrecogrition is perfaomedafter
everyaction.

Figures3(a)and3(b) arethe projectims of thebox state
andthegoalmarker stateontheground surface. Thesestate
spacesareconstrictedfrom rough directiors androughdis-
tancesf objects. We usedfour levelsof thedistanceor the
box (i.e., “proximate”, “near”, “middle”, “far”) andthree
levelsfor thegoalmarler (“nea”, “middle”, “far”).

We have to pay specialattentionto the position of the
robd’s legs. Depeming on the physical relatiorship be-
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(b) Statesof the goal marker.

Figure 3: Statedn realrobot. Thefront of theroba is up-
sideof thesefigures.

tweenthe box andlegsof theroba, the box moves forward
or deviatesto aside.If anapprqriatestatespacds notde-
fined,thenthe Markov property of the ervironment, which
isapremiseof RL, canna bemet;therefae, optimd actions
canrot befound. Consequaetly, we have definel the “prox-
imatestraightleft” andthe “proximatestraightright” states
atthefrontal positionsof thefront legs. Thesestatesdo not
exist in the simulationbecausehe interactionbetweerthe
legsof theroba andtheboxis very difficult to simulate.
The stateis definedto be “lost” whenthe roba misses
thebox or the goalposition.Remembethatthe CCD cam-
eraof ourroba is fixedin aforward directian, notmaovable.
As a resultof this, the roba often missesthe box or goal.
To recover from this missing,we usethefollowing strateyy.
The robot record the missingdiredion (i.e., left or right)
whenit hasmissedthe box or goal. The robot canusethis
informationfor a certainnumbe of stepssoasto geneate
the“lost into left” or “lost into right” stateswhich means
thatthetarget haddisappegedin eithertheleft or right di-
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Figure4: Statesfor box andgoal marker in the simulator
The areabox _ahead is not the statebut the placewhere
i f _box_ahead executesfirst argument.

rectionin thelastfew steps.

As shawn in Figs. 3(a) and3(b), thereare 17 statesfor
thebox and14 statesfor the goalmarker. The stateof this
ervironmen is represetedwith their crossproduct. Hence,
thereare238statedn total.

Whenthe god marker is “near center”and the box is
nearfront of theroba (i.e., oneof the statesn “box proxi-
matecenter”,“box proxmatestraightleft”, “box proximate
straightright”, and“box nearcenter’), therobot recogrizes
thatit hascomgetedthetask.

3.2 GP part conductedby the simulated robot

The simulatorin our expelimentusesa robotexpressedis
acircle on atwo-dimersionalplaneaswell asa box anda
goalmarlerfixedontheplane.Thetaskis completedvhen
therobot haspushedheboxforwardto thegoalmarker[8].

We definedthreeactions(“move forward”, “turn left”,
“turn right”) in an actionset. The statespacein the sim-
ulator is simplified as shovn in Fig. 4. While actiors of
therealroba arenotideal, the simulatoractionsareideal,
i.e., “move forward' actionmovesthe robot truly straight-
forward and“turn left” actionpurelyturnsleft. Of all the
states,the “lost into left” and “lost into right” statesare
similar to thoseusedby a realroba. Thesearethe states
producedwhenthe box or the goal is notin view andthe
precedhg stepis eitherattheleft or attheright.

Suchactiors with a statedivision are similar to those
for arealrobd, but arenotidenticd. In addtion, physical
paraneterssuchasboxweightandfriction arenotmeasured
noris the shapeof theroba takeninto accoun. Therefae,
this simulatoris sosimpleandit is possibleto build it with
low cost.

The operatimal charactéstics of the box expressedn
thesimulatorareasfollows:

1. Theboxmovesforwardif it comesn contactwith the
front of the robot andthe robot movesahead.

2. If the box is nearthe centerof the robot whenthe
robot turns, thenthe box remairs nearthe centerof

1Thismeansherobotis ableto pushthe box with the Forward action.
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Figure 5: Action nodes pick up a real actionaccordimy to
the Q-vaue of arealrobd’s state.

theroba aftertheturn.

Weusedatermiral set={ nove f orward,turnleft,
turn_right } andafunctionset={ i f box_ahead,
box_wher e, goal .wher e, prog2 }. Theabove termi-
nalnodescorrespondo the“moveforward”, “turn left”, and
“turn right” actionsrespectiely in the simulator Thefunc-
tional nodesbox wher e andgoal wher e arethe func-
tions of six arguments,andthey execue oneof the six ar
gunents, depemling on the statesof the box andthe goal
marker as seenthrowgh the roba’s eyes (Fig. 4). Further
detailsof the settingof GP aredescribedn [8].

3.3Integration of GP and RL

Reinforrementearnirg is executedto adaptactionsacquied
via GP to the operatimal charateristicsof a real robd.
Morepreciselythisis aimedatrevisingthenove f or war d,
turnl eft andturn_right actionswith the simulator
soasto achieve their optimalactionsin arealervironmen.

We applied@())-learningmethodto arealrobot. Q(\)-
learnirg is a variantof Q-learring andcanlearnmoreef-
ficiently thannomal Q-leaning. This methodrecodsthe
traceof visited statesandactionstaken. Whena tempaal
differencgTD) erroroccus, Q-valuesinvolvedin thetrace
areassignedreditor blamefor the erra. We implemente
“naive Q ()" with areplacirg tracedescriedin [17].

A @Q-table,onwhichQ-valueswerelisted,is allocatedo
eachofthenove f orward,turnl eft andt urnri ght
actionnodes. Thestatesusedonthe Q-tadesarethosefor a
realrobot. Therefae, actualactionsselectedvith -tables
canvary dependingon the state,even if the sameaction
nocesareexecued by arealrobot. Figure5 illustratesthe
above situation.

For the initialization of the Q-tade, we allow a spe-
cific actionto be chosernmore frequertly. For instancejn
caseof the -tablefor nove f or war d, the Forward ac-
tion tendsto be selectednoreoftenasarethe Q-taldesfor
turnl eft andt urn_ri ght. However, whentheboxis

2This meansthat the robot is ableto changethe direction of the box
only by Left-turn andRight-turn actions.



Table2: Action nocesandtheir selectableealactions.

actionnode realactionswhich Q-talde canselect.
nove_forward Forward*! Left-sidestepRight-sidestep
turnleft Left-tum*! Left-tum + sidestepy? Left-sidestep
turn_right Right-tun*! Right-turn+ sidestefy? Right-sidestep

*I Theactionwhich Q-tableprefersto select.
*2 preferredactionsif the box is in a stateof “proximate center”,“near

LT

center”,

in astateof “proximatecenter”,“nearcentet, “middle cen-
ter”, or “far center’, thentheactionsfor the combindion of
Left(Right)-turn and sidestepare chesenwith greaterfre-
guerty. This maintainsconsisteng with the simulatorre-
sults. Becauseurn actionsare always accompniedby a
small backward motion, whenthe roba takesan action of
the combiration of turn andsidestefin oneof thesestates,
thenthe next stateremairs to be the same. In the imple-
mentation the initial value of 0.00A wasenterednto the
respectie Q-tables so that preferredactionswere selected
for eachQ-table, while 0.0 was enteredfor otheractions.
The robot canlearnoptimal actionsin this settingbecase
Q-valuescorverge regadlessof theinitial value[17]. The
actionswhich are prefered to selecton eachactionnode
aresummarizedn Table2. In addition eachQ-talde is ar
rangel to setthelimits of selectableactions.This refersto
theideathat, for examge, “turn right” actionsarenot nec-
essanyto learnin thet ur nl ef t node

Sometranslationsof statesarerequred to runa GPin-
dividual in the real robot. We translatedthe states‘prox-
imate straightleft” and “proximate straightright”, which
exist only in therealrobot, into a “center” statein function
nodes of the GR Whentheboxis in the“proximatecenter”
statefor therealroba, i f box ahead node execuesits
first amgument.

As for Q())-learningparametes, the reward was setto
be 1.0whenthe goalwasachiezedand0.0for otherstates.
We chosethe learnirg rate . = 0.3, the discountfactor
~ = 0.8 andthe trace-deay paraneter\ = 0.5 . These
paranetersaredetermiredfrom preliminary experiments.

4 Experimental Resultswith a humanoid robot
HOAP-1

An expeiimentwas perfamedusinga humanoidrobot. In

this expeliment,the startingstatewaslimited to anarrarge-
mentin which boththe box andthe god positionwerevis-

ible. This wasjustified by the following reason. Even if

learningis perfomedfrom anarrangenentin which either
the box or the goal is “lost”, it canrot be predictedthat
the box or god positionwill subsegantly becane visible.
Thus,therewill besubstantiavariatiors in statetransition,
andalongtimewill berequirdfor thelearning

middle center”,or “f arcenter”.

As a singletrial, the learningwas perfamed until the
robot protrudedfrom thefield of the experimentor the pre-
deternined numter of steps(i.e., 30 steps)was exceeded.
Thelearningin the real roba was performedin abou six
hous.

Just at the start of learning: The robd succeededn
comgeting thetaskin mary situations.This is becausehe
robot actedrelatively well usingthe progam evolved with
thesimulator althoudh theoperatimal characteristidiffers
from AIBO.

However, therobad took along time in somesituations.
This proves that the acquire actionswith the simulator
are not always optimal in a real ervironmentbecase of
the differencesbetweenthe simulatorand the real robd.
Thesedifferencesnecessitatehe statesaddal to the box
for therealroba, i.e., “proximatestraightleft” and“proxi-
matestraightright”. Theoperatimal charactesticsin these
statesareunknown to theroba before learnirg.

After six hours (after about 1800steps) Noticeablyim-
provedactionswereobsenred. Therobot selectedapprgri-
ateactionsin the situations.Fig. 6 shavs sucha successful
actionsequene. It completecthe taskmuchfasterthanit
did beforelearning

The sameimprovement hasbeenobsened asdescribe
in our previous studieson AIBO [8]. This undersceesthe
effectivenes®f ourappoach.SinceGPsucceedeth learn-
ing somegeneal knovledge,in the sensehatits usages
notlimited to a particularrobd, thenit is applicalbe to both
AIBO andHOAP-1.

5 Discussion

5.1 Measurementof Impr ovement

We performedthe quaritative compaison so asto investi-
gatehow efficiently theroba performedafterlearning For

this conrparison,we rancmly selectedsix situations:four

situationsareselectedrom statesaddel for therealrobots
(“box proximatestraightleft” and“box proximate straight
right”), andthe othertwo areselectedrom different states.
We measuredhe number of stepsin conpleting the task
both before and after learningin thesesituations. These



Figure6: Successfudictionseries.Thegoalis atthebottom
centerof eachfigure.

testsareexecutel in a greedypolicy in order to insurethe
roba alwaysselectghebestactionin eachstate.

Table 3 shaows the results. After the learning the roba
competedthe taskmoreefficiently in four out of six situ-
ations(representedy bold font in the table)than befae.
In particular greatimprovementwasobsered in situation
#2. Theseresultsprove ourtechniqe workedvery well and
thentherobas learnedefficientactions.

Thereis anothempointto conside in termsof efficiency.
We hadto dealwith the*“state-actiordeviation” problem([2]
whenapgying Q(\)-learningto thisexpetiment. Thisis the
prodem thatoptimd actionscanna be achieveddueto the
dispersiorof statetransitiors. More preciselyif the stateis
commsedonly of theimagesthereareoftennoremarlable

Table3: Comparisorof thenumter of stepsbetweerbefae
andafterlearning

#. state before after
situation notation learning | learning

Box: proximatestraightright

1 GoalMarker: middleright 7.3 8.5
Box: proximatestraightright

2 GoalMarker: middle left 10.7 5.6
Box: proximatestraightleft

3 GoalMarker: middleright 16.3 12.8
Box: proximatestraightleft

4 GoalMarker: farright 14.0 15.3
Box: nearleft

5 GoalMarker: far center 14.7 12.3
Box: middleright

6 GoalMarker: far center 11.3 10.9

differencesn imagevalueswithin anaction. As a solution
tothis prodem, thesameactionshouldberepeatedintil the
current statechangs. The Q-valuesare updatedwhenthe
statechangegfor details,se€[8]).

In Q(X)-learningaswell asin the usualreinforcement
learnirg, the agentlearnsoptimal actionsin orderto max-
imize the sumof the discourted rewardswhich it receves
until comgeting thetask[17]. Thesum,whichis calledas
expecteddiscounedretumn, canbewritten asfollows:

T
Ry = Z’YkTHkH, (1)
k=0

wheret is a currert time step, T is thelasttime step,~ is
the discount factor (0 < v < 1). r¢1 11 Mmeansareward
recevved k + 1 time stepsin the future. In this experiment,
therewardis definedasr = 1.0 only whenthetaskis com-
pleted othewiser = 0.0. In thesituation theequationcan
bewritten simply as:

Ry = ’YT- (2

This forces the agentto minimize 7' (i.e., the nunber of

steps)in achieving the task. The stepis the statetransition
becasgeof thetreatmenbf “state-actiordeviation’. There-
fore, we alsohave to compae the countsof the statetran-
sitionsin comgeting the taskso asto investigatehow effi-

cientlytherobotbehaves.

Table4 shavsthe countsof statetransitionsn the situa-
tions. Thistableillustratesthatthe performane in situation
#4 was improved after learnirg in termsof the countsof
statetransitions.Thisis evidence thatthereal-timelearnirg
processof ourtechriqueis very effective.

In situation#1, the unpredictablemovementof the box
was obseved mary times. This unpredictability resulted
in the longercornvergence, which meansthat it took much
longerto learn.



Table4: Comparisa of thecourts of statetransitions.

#. situation | beforelearning | afterlearning
1 7.0 8.0
2 10.3 4.0
3 16.0 12.5
4 14.0 135
5 14.7 8.3
6 10.3 9.9

Thenumberof stepsdid not necessarilypecone smaller
afterlearningin situation#4, whereasthe numker of state
transitiondbecamesmaller Onereasorseemgo bethatthe
division of the statespaces notappr@riate. Sincethedivi-
sionis fixedduring Q()\)-learning we cannotexped much
improvemet in caseof theincorrectstatespacedivision.

5.2 RelatedWorks

Therearemary studiescombiring evolutionary algorithns
andRL [13, 3]. Although the appoachediffer from our
proposedtechniqie, we have seeseveral studiesin which
GP andRL werecombined [7, 4]. With thesetraditioral
techniqies, Q-learnirg was adofied asa RL, andan indi-
vidud of GP repiesentedhe structue of the statespaceto
besearchedlt is repatedthatits searchingefficiency was
improved in QGP method[7], compaed to the traditioral
Q-learnirg. Thetechniqiesusedin thesestudies however,
are alsoa type of popuation learnirg using numerousin-
dividuals. RL mustbe execued for numerousindividuals
in the population becauseRL is insidethe GP loop. A in-
ordinate amoun of time would be requred for learring if
thewholeprocessvasdirectly appliedto arealrobd. As a
result,no studiesusingthesetechniqueshave beenrepated
with arealroba.

Noisein simulatorsare often essentiato overcomethe
differencesbetweera simulatorandreal ervironment[16].
Theroba whichlearnel with ourtechrique,however, shoved
sufficient perfamancein the noisy real environment,even
thoudh therobot hadlearnel in anidealsimulator Onerea-
sonseemsto be that the coase statedivision can absorb
theimageproessingnoise.We planto condictacompara-
tive experimentof therobustnessproducedby ourtechnque
with thatby noisysimulators.

As describedn Sect.5.1, it seemghat the division of
the statespaceis not appopriatein somesituations. It is
difficult for the robot to improve the actiors in suchsitua-
tions becase the division is fixed in the learring process.
Takahasketal. [18] propsedtwo methals of sggmentirg a
statespaceautomaticlly. In thefirst methodtherealroba
movesin its environment and samplesdata. After that, it
segmets a statespacecorstructinglocal modelsof inputs.
They pointed out that the methodrequres uniformly sam-
pleddatato construcianappopriatestatespace.Theroba

in our expelimenttakesabouttensecond in oneaction. In
this condition, uniform samplingis not reasonabl&ecause
it takes an enomousamoun of time. Although the sec-
ondmethodsegmentghe statespacencremetally on-line,
it alsoseemdo requie samplingmary datato constrict a
sufficient statespace.lt may be time-corsumingfor a real
robot, but it is still aninterestingapprach.

We usedseveral pre-ddined actionsfor the humaroid.
This is a shortcutto investigae the applicability of evolu-
tionaly methals to suchhighdevel functions as solving a
task. In contast, thereare relatedstudiesto evolve low-
level functionsof ahumarmid. Nordinetal. have developed
ahumanoid robot “ELVIS” [15]. Thesoftwareof this robot
is built mainly on GP. They experimentedn the evolution
of stereoscopiwision [6] andsoundlocalization[9]. They
alsorepotedtheresultof ahandeye coordnation[12].

5.3 Futur e Reseaches

We choseonly severd discreteactionsin this study Al-

thowh this is simple and easyto use, continwus actions
will be more realisticin otherapplicatiors. In that situa-
tion, for exanple, “turn left in 300 degrees”at the begin-

ning of RL canbe changd to “turn left in 31.5degrees”
afterlearning depending on the operationalcharactestics
of therobd. We planto condict an experimentwith such
cortinuousactions.

We intendto apply the technigqee to more complicatel
taskssuchasthe multi-agent prodem. It might be possi-
ble to hande a multi-agent taskwith heterogneousobots
by exterding our apprach. For this pumpose,we use a
simulatiorbasedearnirg to acquie thecomma progiams
appicableto variows typesof robds. After that,realrobots
aresuppsedto learntheir effective actionsin spiteof their
differentoperatimal chaacteristics. This may be possible
while they arecarryingoutacoopeativetaskin areal-word
situation.

Another extersionis to adaptthe simulationparaneters
or modify the statespaceby using the information avail-
able from a real environment. The simulatortuning will
requre thefeedlack processasdescriledin dottedlinesin
Fig. 2. Thiswill enableGP to evolve more effective pro-
grans. Note that progamsevolved by GP canna be run
without ary statespace However, we cangive arough state
spacanitially andthenmodify it gradually accordng to the
robot’s charateristics,which will establishmore effective
learnirg scheme.

6 Conclusion

We have introducedareal-timeadaptatio technigieto real
robots. This appr@achis basedon our previously proposed
methal with AIBO. We appliedthe sameevolved progiams



to ahumaroid robot. We confirmedthat,after6-hourlearn-
ing, the effective adaptatio was establishedaccordng to
therobots’opeationalcharactestics soasto solve thetask
effectively. Our appoachwas successfuln acquirirg the
comma program, which will be applicdle to heterge-
neots robots.
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