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Abstract. We propose an integrated technique of genetic programming
(GP) and reinforcement learning (RL) that allows a real robot to execute
real-time learning. Our technique does not need a precise simulator be-
cause learning is done with a real robot. Moreover, our technique makes
it possible to learn optimal actions in real robots. We show the result of
an experiment with a real robot AIBO and represents the result which
proves proposed technique performs better than traditional Q-learning
method.

1 Introduction

When executing tasks by autonomous robots, we can make the robot learn what
to do so as to complete the task from interactions with its environment but not
manually pre-program for all situations. We know that such learning techniques
as genetic programming (GP)[1] and reinforcement learning (RL)[2] work as
means for automatically generating robot programs.

When applying GP, we should repeatedly evaluate many individuals over
several generations. Therefore, it is difficult to apply GP to problems that re-
quires too much time for evaluations of individuals. That is why we find very
few previous studies on learning with a real robot.

To obtain optimal actions using RL, it is necessary to repeat learning trials
time after time. The huge amount of learning time required presents a great
problem when using a real robot. Accordingly, most studies deal with the prob-
lems of receiving an immediate reward from an action as shown in [3], or loading
the results learned with a simulator into a real robot as shown in [4, 5].

Although it is generally accepted to learn with a simulator and apply the
result to a real robot, there are many tasks that are difficult to make a precise
simulator. Applying these methods with an imprecise simulator could result in
creating programs which may function optimally on the simulator but cannot
provide optimal actions with a real robot. Furthermore, the operating charac-
teristics of a real robot show certain variations due to minor errors in the manu-
facturing process or to changes with time. We cannot cope with such differences
of robots only using a simulator.

Learning process with a real robot is surely necessary, therefore, for it to
acquire optimal actions. Moreover, learning with a real robot sometimes makes
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Fig. 1. The robot AIBO, the box and the goal area.

possible to learn even hardware and environmental characteristics, thus allowing
the robot to acquire unexpected actions.

To solve the above difficulties, we propose a technique that allows a real
robot to execute real-time learning in which GP and RL are integrated. Our
proposed technique does not need a precise simulator because learning is done
with a real robot. As a result of this idea, we can greatly reduce the cost to make
the simulator much precise and acquire the program which acts optimally in the
real robot.

The main contributions of this paper are summarized as follows:

1. We propose an integrated method of GP and RL.

2. We give empirical results to show how our approach works well for real-robot,
learning.

3. We conduct comparative experiments with traditional Q-learning to show
the superiority of our method.

The next section gives the definition of a task in this study. After that,
Section 3 explains our proposed technique and Section 4 presents experimental
results with a real robot. Section 5 provides the result of comparison and future
researches. Finally, a conclusion is given.

2 Task Definition

We used an “AIBO ERS-220” (Fig. 1) robot sold by SONY as the real robot
in this experiment. AIBO’s development environment is freely available for non-
commercial use and we can program with C++ language on it [6]. An AIBO
has a CCD camera on its head, and moreover, an AIBO is equipped with image
processor. It is able to easily recognize objects of specified colors on a CCD
image at high speed.

The task in this experiment was to carry a box to a goal area. One of the
difficulties of this task is that the robot has four legs. As a result, when the robot
moves ahead, we see cases where the box sometimes is moved ahead or deviates
from side to side, depending on the physical relationship between the box and
AIBO legs. It is extremely difficult, in fact, to create a precise simulator that
accurately expresses this box movements.



3 Proposed Technique

In this paper, we propose a technique that integrates GP and RL. As can be seen
in Fig. 2(a), RL as individual learning is outside of the GP loop in the proposed
technique. This technique enables us (1) to speed up learning in real robot and
(2) to cope with the differences between a simulator and a real robot.
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Fig. 2. The flow of the algorithm.

The proposed technique consists of two stages (GP part and RL part).

1. Carry out GP on a simplified simulator, and formulate programs that have
the standards for robot actions required for executing a task.

2. Conduct individual learning (= RL) after loading the programs obtained in
Step 1 above.

In the first step above, the programs that have the standards for the actions
required of a real robot to execute a task are created through the GP process.
The learning process of RL can be speeded up in the second step because the
state space is divided into partial spaces under the judgment standards obtained
in the first step. Moreover, preliminary learning with a simulator allows us to
anticipate that a robot performs target-oriented actions from the beginning of
the second stage. We used Q-learning as RL method in this study.

Although the process expressed by the external dotted line in Fig.2(a) was
not realized in this study, it is a feedback loop. We consider that the parameters
in a real environment that have been acquired via individual learning should
ideally be fed back through this loop route.

The comparison with the traditional method (Fig. 2(b)) is discussed later in
Sect. 5.2.



3.1 RL part conducted on the real robot

Action set We prepared six selectable robot actions (move forward, retreat,
turn left, turn right, retreat + turn left, and retreat + turn right). These actions
are far from ideal ones: e.g. “move forward” action is not only to move the robot
straightly forward but also has some deviations from side to side and “turn left”
action is not only to turn left but also move the robot a little bit forward. The
robot has to learn these characteristics of actions.

Every action takes approximately four seconds and eight seconds including
the swinging of the head described below. It is, therefore, advisable that the
learning time is as short as possible.

State Space The state space was structured based on positions from where
the box and the goal area can be seen in the CCD image, as described in [4].
The viewing angle of AIBO CCD is so narrow that the box or the goal area
cannot be seen well with only one-directional images, in most cases. To avoid
this difficulty, we added a mechanism to compensate for the surrounding images
by swinging AIBO’s head so that state recognition can be conducted by the head
swinging after each action. This head swinging operation was always uniformly
given throughout the experiment as it was not an element to be learned in this
study.

Figure 3 is the projection of the box state on the ground surface. The “near
center” position is where the box fits into the two front legs. The box can be
moved if the robot pushes it forward in this state. The box remains same position
“near center” after the robot turns left or right in this state because the robot
holds the box between two front legs. The state with the box not being in view
was defined as “lost”; the state with the box not being in view and one preceding
step at the left was defined as “lost into left” and, similarly, “lost into right” was
defined.
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Fig. 3. States in real robot for the box. The front of the robot is upside of this figure.

We should pay special attention to the position of legs. Depending on the
physical relationship between the box and AIBO legs, the movement of the box
varies from moving forward to deviating from side to side. If an appropriate state



space is not defined, the Markov property of the environment, which is a premise
of RL, cannot be met, thereby optimal actions cannot be found. Therefore,
we defined “near straight left” and “near straight right” states at the frontal
positions of the front legs.

We thus defined 14 states for the box. We similarly defined states of the goal
area except that “near straight left” and “near straight right” states do not exist
in them. There are 14 states for the box and 12 for the goal area; hence, this
environment has states of their product, i.e., 168 states totally.

3.2 GP part conducted on the simulated robot

Simulator The simulator in our experiment uses a robot expressed in circle on
a two-dimensional plane, a box, and a goal area fixed on a plane. The task is
completed when the robot pushes the box forward and overlaps the goal area on
this plane.

We defined three actions (move forward, turn left, turn right) as action set
and defined the state space in the simulator which is the simplified state space
used for a real robot as Fig. 4. While actions of the real robot are not ideal ones,
these actions in the simulator are ideal ones.
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Fig. 4. States for box and goal area in the simulator. The area box_ahead is not the
state but the place where if box_ahead executes first argument.

Such actions and a state division is similar to that of a real robot, but is
not exactly the same. In addition, physical parameters such as box weight and
friction were not measured nor was the shape of the robot taken into account.
Therefore, this simulator is very simple and it is possible to build it in low cost.

The two transfer characteristics of the box expressed by the simulator are
the following.

1. The box moves forward if the box comes in contact with the front of the
robot when the robot goes ahead®.
2. After rotation, the box is near the center of the robot if the box is near the
center of the robot when the robot turns?.
! This corresponds to the situation that real robot pushes the box forward.
2 This corresponds to the situation in which the box is placed between the front legs
of a real robot when it is turning.



Settings of GP The terminals and functions used in GP were as follows:

Terminal set: move forward, turnleft, turn right
Function set: if box_ahead, box where, goal where, prog2

The terminal nodes above respectively correspond to the “move forward”, “turn
left”, and “turn right” actions in the simulator. The functional nodes box where
and goal _where are the functions of six arguments, and they execute one of the
six arguments, depending on the states (Fig. 4) of the box and the goal area as
seen by the robot’s eyes. The function if _box_ahead which has two arguments
executes the first argument if the box is positioned at “box ahead” position in
Fig. 4. We arranged conditions so that only the box_where or the goal where
node becomes the head node of a gene of GP. The gene of GP is set to start
executing from the head node and the execution is repeated again from the head
node if the execution runs over the last leaf node until reaches maximum steps.
A trial starts with the state in which the robot and the box are randomly
placed at the initial positions, and ends when the box is placed in the goal area
or after a predetermined number of actions are performed by the robot. The
following fitness values are allocated to the actions performed in a trial.

If the task is completed:
fgoal =100

. _ _ ( Number of moves ) )
Fremaining moves = 10 x (0'5 ( Maximum limit of number of moves )

. _ _ ( Number of turns ) )
fremammg‘tums =10x (0'5 ( Maximum limit of number of turns )

— If the box is moved at least once: fiove = 10
If the robot faces the box at least once: fseobox = 1

If the robot faces the goal at least once: fsee_goal = 1
Frost = ( Number of times having lost sight of the box )
- ost —

( Number of steps )

The sum of the above figures indicates a fitness value for the i-th trial in an
evaluation, or fitness;.

To make robot acquire robust actions that do not depend on the initial
position, the average values of 100 trials in which the initial position is randomly
changed was taken when calculating the fitness of individuals. The fitness of
individuals is calculated by the following equation.

99

1 Maxi length) — (Gene length
fitness = ﬁz fz'tness,-+2.o-( aximum gene length) — (Gene length)
=0

(Mo 1 (1)
aximum gene length)
The second term of the right side of this equation has the meaning that a penalty
is given to a longer gene length.

Using the fitness function determined above, learning was executed for 1,000
individuals of 50 generations with maximum gene length = 150. Learning costs
about 10 minutes on the Linux system equipped with an Athlon XP 1800+.

We finally applied the individuals that had proven to have the best perfor-
mance to learning with a real robot.



Table 1. Action nodes and their selectable real actions.

action node real actions which @Q-table can select.
move_forward| “move forward””, “retreat + turn left”, “retreat + turn right”

turn_left “turn left””, “retreat + turn left”, “retreat”

turn right “turn right””, “retreat + turn right”, “retreat”

* The action which Q-table prefers to select with a biased initial value.

3.3 Integration of GP and RL

Q-learning is executed to adapt actions acquired via GP to the operating charac-
teristics of a real robot. This is aimed at revising the move forward, turn left
and turn right actions with the simulator to their optimal actions in a real
world.

We allocated a (Q-table, on which Q-values were listed, to each of the move forward,
turn_left and turn right action nodes. The states on the Q-tables are regarded
as those for a real robot. Therefore, actual actions selected with @-tables can
vary depending on the state, even if the same action nodes are executed by a
real robot. Figure 5 illustrates the above situation. The states “near straight
left” and “near straight right”, which exist only in a real robot, are translated
into a “center” state in function nodes of GP.

Each @Q-table is arranged to set the limits of selectable actions. This refers to
the idea that, for example, “turn right” actions are not necessary to learn in the
turn_left node. In this study, we defined three selectable robot actions for each
action node as Table 1. With this technique, each )-table was initialized with a
biased initial value3. The initial value of 0.0001 was entered into the respective
(Q-tables so that preferred actions were selected for each ()-table, while 0.0 was
entered for other actions. The actions which are preferred to select on each action
node are described in Table 1.
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Fig. 5. Action nodes pick up a real action according to the @-value of a real robot’s
state.

The total size of the three @)-tables is 1.5 times that of ordinary Q-learning.
Theoretically, convergence with the optimal solution is considered to require

3 According to the theory, we can initialize Q-values with arbitrary values, and Q-
values converge with the optimum solution regardless of the initial value [2].



more time than ordinary Q-learning. However, the performance of this technique
while programs are executed is relatively good. This is because all the states on
the @Q-table are not necessarily used as the robot performs actions according to
the programs obtained via GP and the task-based actions are available after the
Q-learning starts.

The “state-action deviation” problem should be taken into account when
executing Q-learning with the state constructed from a visual image [4]. This
is the problem that optimal actions cannot be achieved due to the dispersion
of state transitions because the state composed only of the images remains the
same without clearly distinguishing differences in image values. To avoid this
problem, we redefined “changes” in states. The redefinition is that the current
state is unchanged if the terminal node executed in the program remains the
same and so does the executing state of a real robot*. Until the current state
changes, the Q-value is not updated and the same action is repeated.

As for parameters for Q-learning, the reward was set at 1.0 when the goal
is achieved and 0.0 for other states. We set the parameters as the learning rate
« = 0.3 and the discount factor v =0.9 .

4 Experimental Results with AIBO

Just after starting learning: The robot succeeded in completing the task when
Q-learning with a real robot started using this technique. This was because the
robot could perform actions by taking advantage of the results learned via GP.

At the situation in which the box was placed near the center of the robot along
with robot movements, the robot always achieved the task with regard to all the
states tried. Whereas, if the box was not placed near the center of the robot
after its displacement (e.g. if the box was slightly outside the legs), the robot
sometimes failed to move the box properly. The robot repeatedly turned right
to face the box, but continued vain movements going around the box because it
did not have a small turning circle, unlike the actions in the simulator. Figure
6(a) shows typical series of actions. In some situation, the robot turned right
but could not face the box and lost it in view (at the last of Fig. 6(a)).

This typical example proves that optimal actions with the simulator are not
always optimal in a real environment. This is because of differences between the
simulator and the real robot.

After ten hours (after about 4000 steps): We observed optimal actions as Fig,.
6(b). The robot selected “retreat” or “retreat 4+ turn” action in the situations in
which it could not complete the task at the beginning of Q-learning. As a result,
the robot could face the box and pushed the box forward to the goal, and finally
completed the task.

Learning effects were found in other point, too. As the robot approached the
box smoothly, the number of occurrence of “lost” was reduced. This means the
robot acts more efficiently than the beginning of learning.

4 We modified Asada et al.’s definition [4] in order to deal with several Q-tables.



(a) Failed actions losing the box at the (b) Successful actions after 10-hour
beginning of learning. learning.

Fig. 6. Typical series of actions.

5 Discussion
5.1 Comparison with Q-learning in Both Simulator and Real Robot

We compared our proposed technique with the method of Q-learning which
learns in a simulator and re-learns in a real world (we call this method as RL+RL
in this section). For Q-learning in the simulator, we introduced the qualitative
distance (“far”, “middle”, and “near”) so that the state space could be similar
to the one for the real robot®.

For this comparison, we selected ten situations which are difficult to complete
at the beginning of Q-learning because of the gap between the simulation and
the real robot. We measured action efficiency after ten-hour Q-learning for these
ten situations. These tests are executed in a greedy policy in order that the robot
always selects the best action in each state.

5 This simulator has 12 states for each of the box and the goal area; hence, this
environment has 144 states.



Table 2. Comparison of proposed technique (GP+RL) with Q-learning (RL+RL).

#. situation GP+RL RL+RL
avg. steps|lost box|lost goal|avg. steps|lost box|lost goal
1 19.6 0 1 20.0 0 1
2 14.7 0 0 53.0 2 2
3 24.0 0 1 26.7 0 1
4 10.3 0 0 11.0 0 0
5 21.6 0 0 88.0 3 3
6 13.5 0 0 10.5 0 0
7 26.7 0 1 26.0 0 1
8 23.0 0 1 13.0 0 0
9 21.5 0 0 10.5 0 0
10 13.5 0 0 29.0 0 1

Table 2 shows the result of both methods, i.e., proposed technique (GP+RL)
and Q-learning method (RL+RL). This table represents the average number of
steps to complete the task and the number of occurrences when the robot has
lost the box or the goal area in completing the task.

While RL+RL performed better than the proposed technique in four situa-
tions on the average of the steps, the proposed technique performed much better
than RL+RL in other six situations (bold font in Table 2). Moreover, the robot
evolved by the proposed technique less often lost the box and the goal area than
that by RL+RL. This result proves that our proposed technique learned more
efficient actions than RL+RL method.

Figure 7 shows the changes in @)-values when they are updated in Q-learning
with the real robot. The absolute value of the Q-value change represents how
far the Q-value is from the optimal one. According to Fig. 7, large changes
occurred to RL+RL method more frequently than to our technique. This may
be because RL+RL has to re-learn optimal Q-values starting from the ones which
have already been learned with the simulator. Therefore, we can conclude that
RL+RL requires more time to converge to optimal @-values.
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(a) Proposed technique (GP+RL). (b) Q-learning (RL+RL).

Fig. 7. Comparison of changes in )-values after about 8-hour to 10-hour Q-learning
with a real robot.



5.2 Related Works

There are many studies combined evolutionary algorithms and RL [9,10]. Al-
though the approaches differ from our proposed technique, we see several studies
in which GP and RL are combined [7,8]. With these traditional techniques, Q-
learning is adopted as a RL, and individuals of GP represents the structure of
the state space to be searched. It is reported that searching efficiency is improved
in QGP, compared to traditional Q-learning [7].

However, the techniques used in these studies are also a kind of population
learning using numerous individuals. RL must be executed for numerous individ-
uals in the population because RL is inside the GP loop, as shown in Fig. 2(b).
A huge amount of time would become necessary for learning if all the processes
are directly applied to a real robot. As a result, no studies using any of these
techniques with a real robot have been reported.

Several studies on RL pursue the use of hierarchical state space to enable
us to deal with complicated tasks [11,12]. The hierarchical state spaces in such
studies is structured manually in advance. It is generally considered difficult to
automatically build the hierarchical structure only through RL. We can consider
the programs automatically generated in GP of proposed technique represents
the hierarchical structure of state space which is manually structured in [12].

Noises in simulators are often effective to overcome the differences between a
simulator and real environment [13]. However, the robot learned with our tech-
nique showed sufficient performance in noisy real environment, while it learned
in ideal simulator. One of the reasons is that the coarse state division absorbs
the image processing noise. We plan to perform a comparison the robustness
produced by our technique with that by noisy simulators.

5.3 Future Researches

We used only several discrete actions in this study. Although this is simple, con-
tinuous actions are more realistic in applications. In that situation, for example,
“turn left in 30.0 degrees” in the beginning of RL can be changed to “turn left
in 31.5 degrees” after learning, depending on the operating characteristics of the
robot. We plan to conduct an experiment with such continuous actions.

We intend to apply the technique to more complicated tasks such as the
multi-agent problem and other real-robot learning. Based on our method, it can
be possible to use almost the same simulator and settings of RL as described in
this paper. Experiments will be conducted with various robots, e.g., a humanoid
robot “HOAP-1” (manufactured by Fujitsu Automation Limited) or “Khepera”.
The preliminary results were reported in [14]. We are in pursuit of the applica-
bility of the proposed approach to this wide research area.

6 Conclusion

In this paper, we proposed a technique for executing real-time learning with a
real robot based on an integration of GP and RL techniques, and verified its
effectiveness experimentally.



At the initial stage of Q-learning, we sometimes observed unsuccessful dis-
placements of the box due to a lack of data concerning real robot characteristics,
which had not been reproduced by a simulator. The technique, however, was
adapted to the operating characteristics of the real robot through the ten hour
learning period. This proves that the step of individual learning in this technique
performed effectively in our experiment.

This technique, however, still has several points to be improved. One is feed-
ing back data from learning in a real environment to GP and the simulator, which
corresponds to the loop represented by the dotted line in Fig.2(a). This may en-
able us to improve simulator precision automatically in learning. Its realization
is one of the future issues.
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