
Multi-agent Learning of Heterogeneous Robots

by Evolutionary Subsumption

Hongwei Liu1,2 Hitoshi Iba1

1 Graduate School of Frontier Science, The University of Tokyo,
Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656, Japan

2 School of Computer and Information, Hefei University of Technology,
Hefei 230009 China

{Lhw, Iba}@miv.t.u-tokyo.ac.jp

Abstract. Many multi-robot systems are heterogeneous cooperative sys-
tems, systems consisting of different species of robots cooperating with
each other to achieve a common goal. This paper presents the emer-
gence of cooperative behaviors of heterogeneous robots by means of GP.
Since directly using GP to generate a controller for complex behaviors is
inefficient and intractable, especially in the domain of multi-robot sys-
tems, we propose an approach called Evolutionary Subsumption, which
applies GP to subsumption architecture. We test our approach in an
“eye”-“hand” cooperation problem. By comparing our approach with
direct GP and artificial neural network (ANN) approaches, our experi-
mental results show that ours is more efficient in emergence of complex
behaviors.

1 Introduction

Genetic Programming (GP) has proven successful in designing robots capable
of performing a variety of non-trivial tasks[7, 11]. However, the fields’ focus is
almost exclusively on single-robot systems. Many tasks can be solved more ef-
ficiently when a multi-robot system is used; while some tasks cannot be solved
at all with single-robot systems. Therefore, recently more and more researchers
have applied evolutionary computation techniques to the design of various types
of multi-robot/agent systems[3–6, 8, 9].
In a multi-robot system several robots simultaneously work to achieve a common
goal via interaction; their behaviors can only emerge as a result of evolution and
interaction. How to learn such behaviors is a central issue of Distributed Artificial
Intelligence, which has recently attracted much attention. It is very important
and interesting to study the emergence of robots’ behaviors in multi-robot sys-
tems by means of artificial evolution.
Most of the aforementioned researches are on homogeneous systems. Although
D. Floreano et al.[3] presented a heterogeneous system, the relationship between
the two robots is competitive. In this paper we address the issue in the context
of a heterogeneous multi-robot system, in which two real robots, i.e., Khepera,
are evolved using GP to solve a cooperative task.
Since directly using GP to generate a program of complex behaviors is difficult,



a number of extensions to basic GP have been proposed to solve these con-
trol problems of the robot. For instance, J. Koza employed GP to generate a
subsumption architecture control program[7]. W. F. Punch et al. proposed an
approach to solve robot navigation problems, it incorporated subsumption prin-
ciples into the Echo Augmented Genetic Programming approach[12]. H. Iba et al.
studied the emergence of the cooperative behavior in multiple robots/agents by
means of GP and proposed three types of strategies, i.e., homogeneous breeding,
heterogeneous breeding, and co-evolutionary breeding, for the purpose of evolv-
ing the cooperative behavior[4]. They used a heterogeneous breeding approach
of GP, evolving a multi-agent learning system, to solve robot navigation and
Tile World problems[5]. They also applied the proposed GP system to a homo-
geneous cooperative multi-robot system and tested their approach in an “escape
problem”[8]. These researches showed that GP is efficient in multi-robot/agent
learning.
We report an improvement of GP, called Evolutionary Subsumption–which com-
bines the GP with Brooks’ subsumption architecture[1] and compare our ap-
proach with direct GP and ANN approaches. Our experiments show that this
method is effective in solving such complex problems of robot control.
The rest of this paper is organized as follows: in section 2 we will analyse the
target system and its complexity, our approaches will be presented in section 3,
and in section 4 the experimental result with comparison of evolutionary sub-
sumption and direct GP will be reported. Finally, discussion and some empirical
conclusions are presented.

2 Task domain and complexity

The approaches are evaluated in an “eye”-“hand” cooperation task. In this task
two heterogeneous robots learn complex robotic behaviors by cooperation. One
of them, which is mounted with a digital camera, acts as the “eye” and the other,
which is mounted with a gripper, acts as the “hand” (Figure 1). Their task is:
the “eye” tries to find a cylindrical object1, and then navigates the “hand” to
pick it up and then navigates it to carry the cylinder to the goal. The two robots
are heterogeneous–they have different sensors and actuators, and have different
roles in the system. Their behaviors are complex: including tracking, path plan-
ning, and communication, etc.
We classify the similar problems into three difficulty levels, according to the re-
lationship of the observer–“eye” and actor–“hand”:
Difficulty 1 Fixed “eye”: the “eye” is fixed and usually acts as a bird’s eye
view; that is, it can see the whole environment from its fixed position. The nav-
igation method is the most simple; but if there are obstacles in the environment
it involves route selection problems.

1 There are two cylinders in our system, one is the object that the “hand” needs to
grip in the first stage and the other is the goal, which the “hand” needs to put
the first object near in the second stage. In the following text, in order to ease the
depiction, we use the word ’cylinder’ to indicate the object or the goal according to
the stage, except where we distinguish them explicitly.



Difficulty 2 Semi-fixed “eye”: although the “eye” can move, the relative po-
sition of “eye”–“hand” is fixed or restricted.
Difficulty 3 Unfixed “eye”: the “eye” and the “hand” can move freely, and
the relative position of “eye”–“hand” is variable. Usually the “eye” can only see
part of the environment.
Our target system belongs to difficulty 3. There are rather simple strategies in
difficulty 1 and 2. For instance, in the “escape problem” the navigation of robots
belongs to difficulty 2, the strategy is to keep the image of the button in the
centre of its view field and to enlarge the image though movement, by getting
closer to the object, and finally, touching it[8]. In difficulty 3 the situation is
much more complicated. Since the relative position between “eye” and “hand”
is variable, the “eye” must track two objects simultaneously. The search space of
difficulty 3 has one more dimension than difficulty 2. Specifically, in difficulty 2,
the only object that the “eye” needs to observe is fixed; but, in difficulty 3 one
of the two objects, the hand, is movable. Therefore, the search space of a sys-
tem which belongs to difficulty 3 is large and the emergence of robots’ rational
strategies is very difficult. The “eye” must select suitable viewpoints, observe
the environment, and send correct instructions to “hand”. Along with the mov-
ing of the “hand”, the “eye” must be able to adjust its position and send new
instructions according to the new situation.

Fig. 1. “Eye”-“hand” cooperation
problem

Fig. 2. Evolutionary subsumption approach’s lay-
ered architecture

3 Methodology

3.1 Design of architecture

In our target system, the two robots need to coordinate their behaviors to achieve
the goal. They have explicit division of roles and need to be synchronized by com-
munication. This paper is concerned with how such cooperative behaviors can
be established efficiently; that is, what kind of architecture should be employed
and how to synthesize such an architecture. We employ the evolutionary sub-
sumption approach and compare it with other approaches, such as the direct GP
approach.
According to analysis in section 2, this problem belongs to difficulty 3 and its
search space is very large, it is intractable to search for a direct solution using
Genetic Programming. The divide-and-conquer approach is an intuitive and effi-
cient method when we encounter complex problems. Being a divide-and-conquer



approach, the subsumption architecture decomposes the problem into a set of
levels[1] and each level implements a task-achieving behavior. We employed the
subsumption architecture, dividing the whole behavior into several simple be-
haviors. Then each level is automatically generated by Genetic Programming
respectively; the lower level is formed by Genetic Programming at first, and then
uses lower levels’ output as nodes of the next level of Genetic Programming.

3.2 Evolutionary subsumption

The control system is divided into 4 levels: level0 image processing, level1 dis-
tance assessing, level2 path planning, and level3, scheduling. See figure 2. The
rest of this section will introduce each level of the architecture.
Level0 image processing This level gets an input image, detects whether the
“hand” and cylinders appear in the view or not, and calculates the width of their
image. In order to fix our attention on the task of coordination and not immerse
ourselves in the field of machine vision, we use particular colors to identify the
“hand” and cylinder. See figure 3, input at this level is one scan line of the
image and outputs are Whand, Dhand, Wobj , Dobj (i.e., the offset from center of
image and the width), and two Boolean variables Bhand and Bobj , they indicate
whether the“hand” and the cylinder are within the image.
Level1 distance assessing Level1 takes level0’s output as its input and as-

Center

Fig. 3. Image processing approach of
level0

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  10  20  30  40  50  60  70  80  90  100

Fitness

Generations

Distance Assessing

Fig. 4. Fitness of distance assessing
of level1

sesses the distance of “eye”–“hand” and “eye”–cylinder. Therefore the task of
level1 is a symbolic regression problem:

f(Whand, Dhand, Wobj , Dobj, Bhand, Bobj) = {Dishand, Vhand, Disobj , Vobj} (1)

Where Dishand and Disobj are the assessed distances, and Vhand and Vobj indi-
cate whether the assessed distance is valid or not. These values will be used by
the higher levels. If the objects, i.e., the “hand” and cylinder, do not appear in
viewfield of “eye” or are too far from the “eye” then Vhand and Vobj will be set
to “False”, otherwise they will be set to “True”.
This level is trained separately. For each generation, before training we gener-
ate 10 maps, which randomly specify the position and orientation of the “eye”,
the “hand”, and the cylinder. These 10 maps will be kept constant within one



generation; in the next generation they will be reformed, i.e., will be different
from the prior generations. The fitness is defined as the average error between
the assessed value and the real value in the 10 maps.
The function set consists of F={IFLTE, PROGN2, Data req, IFhand, IFobj},
the terminal set consists of T={Whand, Dhand, Wobj , Dobj , Scan, Const}. The
IFLTE and PROGN2 have the same functionality as in LISP and Data req calls
the level0 to refresh its output. IFhand and IFobj are based on the Bhand and
Bobj defined by level0, they take two arguments and evaluate their first argu-
ment if Bhand/Bobj is true otherwise they evaluate their second argument. The
Scan in the terminal set makes the “eye” rotate to scan the environment, Const

means constant number. The result of evolution is shown in figure 4. After 100
generations’ evolution the error is less than 0.05, this means that the average
error of assessed distance in 10 maps is less than 5cm.
Level2 path planning The task of this level is to generate rational motor
instructions. In our approach we used central-control architecture. It generates
motor instructions for both “eye” and “hand”. The rational instructions for the
“eye” are to get a better viewpoint and the rational instructions for the “hand”
are to drive it closer to the cylinder. As we will observe in our experimental re-
sults in section 4 the two robots will learn to coordinate with each other gradually
and the rational strategy will emerge along with the evolutionary procedure.
Level3 scheduling This level determines when the “hand” should pick up the
cylinder and when it should put the cylinder down. Since the procedure of this
level is fixed, we can write the program for this level manually.

4 Experiments with evolutionary subsumption

4.1 Environment and Experimental setting

We used Webots of Cyberbotics for the experiments. Although in simulation
the robots can obtain extra information, for example the absolute coordinates
etc., in order to ease the transition from simulator to real robots we did not use
such information. In our experiments we only used the information which a real
khepera robot could acquire through its sensor or turret.
The size of the environment is 100×100 cm with high 10 cm white walls, so that
the “eye” can recognize “hand” and cylinder easily. There are no obstacles in the
environment. In order to keep things simple we used special colors to identify
the cylinder and the goal. The “eye” robot was equipped with a k6300 digital
camera turret and the “hand” robot was equipped with a Gripper turret. There
is a wireless channel through which the “eye” and the “hand” can exchange
messages (Figure 1). The initial positions of “eye”, “hand”, cylinder, and goal
are placed randomly. The limit of steps is 2 times the linear distance between
“hand” and cylinder. The actions of a robot are simplified to 4 actions: MF move
forward, MB move backward, MR turn right about 30 degree and move forward,
and ML turn left about 30 degree and move forward.
We used a layered training method to train each level of the subsumption archi-
tecture sequentially. As described in section 3.2 we first evolve the lower levels
then the higher levels. When evolving, the higher levels “subsume” the lower



levels. Thus the performance of level2 is the performance of the whole system.
At the beginning of each generation we generate maps by randomly placing the
“eye”, “hand”, and cylinders. These maps are kept constant only within one
generation. They will be regenerated before evolution to the next generation.
The number of maps, i.e., the fitness cases, increase with the generations from 1
to 10. That is, along with evolution the difficulty of the task is increased, finally
each individual must be evaluated on 10 maps. This method is able to prevent
the robots from accomplishing their task by fluke. Fitness is defined as the max-
imum distance in all fitness cases and the distance is between the “hand” and
the cylinder after the “hand” runs out of its steps.
We used function set F={IFLTE, PROGN2, Data req, IFVhand, IFVobj} and
terminal set T={Dhand, Dobj , Scan, MFe, MBe, MLe, MRe, MFh, MBh, MLh,
MRh}, where the function set is very similar to level1; in the terminal set Dhand

and Dobj are the output of level1, the MFe, MBe, MLe, MRe are the motor
instructions of “eye”, the others are the motor instructions of “hand”. The other
parameters are shown in table 1.

4.2 Result

Figure 5 shows result of level2, which plots the averaged fitness values over gen-
erations for 10 runs. Note that the horizontal line at 0.1 indicates whether the
“hand” can accomplish task or not. Since the fitness function is defined as the
final distance between the “hand” and the cylinder, if the fitness is below that
line it means finally the “hand” approached within 10 cm of the cylinder and
the “hand” can detect the position of cylinder or goal, with its infrared sensors,
and pick up the cylinder with its gripper, or put the cylinder down on the goal.
Along with the increasing of generations the fitness cases increased from 1 to 10.
This means that finally the fitness is the maximum value of 10 fitness cases. If
we take this into account we can find that in this system the cooperative behav-
iors have been established by GP. See figure 8 for the emergence of cooperative
behavior.

Table 1. Parameters of
Genetic Programming
Population size 2000

Crossover rate 0.85

Mutation rate 0.1

Elite rate 0.1

Maximum depth 15

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0  200  400  600  800  1000

Average fitness

Generations

Average fitness of the best individual

Fig. 5. Average fitness (10 runs) of the best individuals of
the system



Although the concrete behaviors are various, they always display a clear strat-
egy. The robots usually demonstrate a limited set of strategies, by analyzing the
emerging behaviors we roughly classify the strategies into 3 types:
1. The “eye” tries to find the “hand” and then maintains its position to it; mean-
while, searching for the cylinder and finally directing the “hand” to close to the
cylinder.
2. The “eye” finds the cylinder at first, moves close to it, stays near it, and then
navigates the “hand” close to the cylinder.
3. The “eye” finds a suitable position neither near to the “hand” nor near to
the cylinder, then it navigates the “hand” to move. After the “hand” has moved
several steps the “eye” adjusts its position in response to the new situation.
All of these strategies have the same effect, namely reduce the level of difficulty.
By using such strategies the relative position of the “eye” and the “hand” be-
comes roughly fixed; therefore, the difficulty level is reduced from 3 to 2 (refer
to section 2).
Figures 6, 7 and 8 show the course of emergence of the rational strategy. At the

Object

start

end start

end

Fig. 6. At the beginning of evolution the
two robots show poor coordination. Usu-
ally they move separately and aimlessly

Object
start

start

Fig. 7. They learned cooperation along
with the evolution and the “observation”–
“action” rhythm emerged

beginning of evolution the two robots show poor coordination. Usually the “eye”
and the “hand” move separately; the “hand” moves aimlessly before the “eye”
surveys the environment and soon it runs out of its steps unnecessarily. Even in
generation 0, there are some individuals better than others, they approach the
cylinder more closely (figure 6).
Along with the evolution the two robots gain more skill in cooperation, they show
clear rhythm of “observation”–“action”–“observation”. . . The “hand” never moves
before the “eye” because it must save its limited steps (figure 7).
Finally, the two robots are more skillful. They have averaged more than 60%
probability to accomplish the task. Figure 8 shows their trajectory. As shown in
figure 8, the two robots show favorable coordination. At first the “eye” observes
the environment and directs the “hand” to move and then the “eye” observes
again adjusting its position and directing the “hand” to move again. . . We can
also observe that the trajectory of “hand” is getting more and more smooth
along with their interaction. These phenomena indicate that the rational strat-



1 2 3 4

5 6 7 8

9 10 11 12

Fig. 8. Finally the skillful cooperative behaviors emerged

egy has emerged.
In our target task, due to the complexity, the two robots could not ensure ac-
complishment of the task in all cases. Although, along with the evolution the
success rate increased. We test the success rate by the following method: for
each generation we select out the best individual to test its success rate as the
success rate of the generation. In the test stage we generate n maps in advance,
giving the position of the “eye”, “hand”, cylinder, and goal as different from the
training environment; but, keeping them constant to provide a fair condition to
all the individuals, which are taken to test the success rate. If the “hand” can
approach the cylinder within 10cm and then approach the goal also within 10
cm, then we mark the individual as able to accomplish the task on this map.
The success rate is defined as the ratio of the number of accomplished maps to
total maps n. In figure 9 the upper curve shows the trend of the average success
rate along with the evolutionary process.

20%

40%

60%

80%

100%

 0  200  400  600  800  1000  1200

Average success rate

Generations

Comparison of average success rate
Evolutionary Subsumption

Direct GP

Fig. 9. Comparison of averaged success
rates (10 runs) of evolutionary subsump-
tion and direct GP

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  500  1000  1500  2000  2500

Average fitness

Generations

Average fitness of best individual
Evolutionary subsumption

Direct GP

Fig. 10. Comparison of the best individ-
ual’s averaged fitness (10 runs) of the di-
rect GP approach and the evolutionary
subsumption approach



4.3 Comparison with direct GP and ANN

For comparison, we also employed direct GP approaches to solve the problem.
In the direct GP approach, in order to keep things simple, we did not use the in-
put image directly; instead, we kept the level0 fixed and just used GP to generate
programs for level1 and level2. The definition of fitness and the other param-
eters are the same as in the evolutionary subsumption approach. In direct GP
approach, although the “eye” and the “hand” can find the rational strategies
and produce cooperative behaviors, they take almost 3 times the number of gen-
erations of the evolutionary subsumption approach and often failed to converge
due to premature convergence. Furthermore, the final fitness of the evolution-
ary subsumption approach is much better than that of the direct GP. Figure 10
shows the comparison of the best individual’s fitness over the generations and in
figure 9, we can find the success rate of the evolutionary subsumption approach
superior to the direct GP approach. This seems due to the reasonable subsump-
tion architecture, we have designed the suitable framework for the whole system
and the GP need only search the optimal solution for each layer in a relatively
small search space. On the other hand, the direct GP approach has to search
in a large search space and often times it can not, or it must take a number
of generations’ evolution to decompose the problem into rational components.
Therefore, the final results are inferior to the subsumption architecture.
In the ANN approach we used a 3 layer feed-forward neural network and used
a generic BP algorithm to train the neural network. Since the BP algorithm
is a supervised approach, when using the BP algorithm we have to provide a
set of correct input-output pairs as training samples. However for ”eye” there
are too many possible strategies. It is impossible to foresee the action of ”eye”;
therefore, we can not provide standard input and output and use an error value
to train the ”eye”. In other words, the reasonable strategies can not emerge
automatically, they must be specified by the designer. So as an alternative we
restricted the movement of the “eye”: fixed the position of the ”eye” and ensured
that the ”hand” and the cylinder both appear in its view-field. We used “batch
training mode”, i.e., weights are changed only after the “hand” ran out of its
steps and stopped. We used the distance of this moment as the error to train
the weight. Still the cooperative behaviors could not emerge within reasonable
training times. Occasionally they succeeded in one fitness case, but it could not
be generalized to other cases. For this approach the success rate approximates
to 0%.

4.4 From simulation to real robots

Usually the simulators are too ideal and abstract compared to the real world
and gaps exist when moving from the simulator to real robots. In our ongoing
experiment (Figure 11) we employ two Khepera robots, they are connected to
a desktop workstation though aerial cable. The aerial cable provides the robots
with data communication from the desktop.
Since our approach employed subsumption architecture, in which the layers can
be redesigned and added incrementally, when moving from the simulator to real



Fig. 11. The preliminary environment of the real robots

robots we just need to redesign level0 and part of level1. Moreover, we did not
use any extra information that only can be obtained via the simulator. This
alleviates the complexity of moving to real robots.

5 Discussion

When designing an intelligent robot it is impossible to foresee all the potential
situations a robot will encounter and specify all behaviors in advance. Especially
in multi-robot systems, the situations that each robot encounters are much more
complex and unpredictable. Therefore, the basic issue is how to design a control
program for such systems. In this paper we studied such an issue and evalu-
ated our evolutionary approach in an “eye”-“hand” cooperative problem. The
experimental result shows that by applying GP to subsumption, our approach,
efficient emergence of a rational strategy for multi-robot systems is possible.
Subsumption architecture decomposes the control system into a set of layers,
each layer implements an asynchronous task achieving behavior[1]. Though it
can produce a robust and flexible robot control system, the design of each layer
is still a burdensome task, especially the high level layers, for instance path
planning and reasoning etc. Furthermore, the robot’s behavior is specified man-
ually by adding corresponding layers, namely the reasonable behaviors can not
emerge automatically just like in neural network architecture (see section 4.3).
In a multi-robot system it is impossible to specify the strategy of each robot
in advance, the rational strategy of a multi-robot system can only emerge as a
result of interaction of robots in the system.
Artificial evolutionary approaches can establish rational strategy automatically,
especially in multi-robot systems. Dario Floreano et al. applied a co-evolutionary
neural network in a predator-prey problem and proposed that the chase and eva-
sion strategy would emerge automatically by the interaction of the two robots[3].
H. Iba et al. discussed the emergence of cooperative behavior for a multi-robot/agent
system[4, 8]. Their research showed that sophisticated strategies can be produced
efficiently by the GP approach.
However, it is also intractable to search for a direct solution using evolution-
ary approaches for complex multistage behaviors, such as our target system. In



this paper we proposed an Evolutionary Subsumption method, which combines
the above two approaches. Compared with direct GP and classical subsumption
architecture, our experimental result shows that it has been endowed with the
advantages of the two approaches. By generating task achieving behaviors au-
tomatically, it alleviates the burden of design of subsumption. Furthermore, by
employing an evolutionary approach, rational behaviors can emerge along with
the evolution. On the other hand, when the search space is too large, subsump-
tion architecture can restrict the search space and make evolutionary approaches
converge within a practicable time.
In summary, comparing subsumption architecture, direct GP and ANN ap-
proaches:
1. It is difficult for subsumption architecture to search for a rational strategy, the
behaviors should be specified in advance. Also subsumption architecture claimed
that complex behaviors are simply the reflection of a complex environment, but
the behaviors are specified by the designer, manually with corresponding layers.
2. Direct GP converges several times slower than the evolutionary subsumption
approach.
3. BP algorithm ANN approach, due to its supervised nature, has the same
problem as the subsumption architecture; that is, the cooperative behaviors can
not emerge automatically.
The other essential issue for a multi-robot system is what kind of architec-
tures should be employed, i.e., central control or distributed control. Chern H.
Y. et al. employed GA to evolve a team of neural networks in a cooperative
multi-robot system and studied the tradeoff between central and distributed
controllers[2]. They found that co-evolutionary architecture can accelerate the
convergence. Since our target system is different from the systems in literature[2,
3, 8], that is the “hand” is not completely autonomous, the convergent speed of
co-evolutionary architecture is slower than central-control architecture. We will
report the comparison of distributed control and central control architecture in
another paper.

6 Conclusion

We examined the emergence of cooperative behavior and proposed that the two
robots can find several quite reasonable strategies. According to the results in
section 4 these strategies are different, but have the same effect; that is by inter-
acting with each other, the “eye” and the “hand” determine their relationship,
thereby reducing the difficulty level efficiently from 3 to 2, and finally accomplish-
ing the task. Our results lead us to deduce the following empirical conclusions:
1. Evolutionary Subsumption is efficient in emergence of a heterogeneous multi-
robot system. It shows superiority to both classical subsumption architecture
and GP approach. As a divide-and-conquer method this approach can be ap-
plied to a number of other robot control problems.
2. The direct GP approach can also be used to deal with some complex sys-
tems; but compared with the evolutionary subsumption approach the efficiency
is much lower and easily falls into local optimum.



3. Since a standard feed-forward neural network with BP training algorithm
needs samples to train the network, it is awkward in emergence of novel behav-
ior.
However, the path of the “hand” to approach the cylinder is not optimal and
the success rate is much lower for some high-reliability applications. For future
research we want to extend this approach to co-evolutionary architecture and
hope to improve the robustness and efficiency of our target system.

Acknowledgement

This work was partially supported by the Grants-in-Aid for Scientific Research
on Priority Areas (C), “Genome Information Sciences” (No. 12208004) from the
Ministry of Education, Culture, Sports, Science and Technology in Japan.

References

1. Brooks R., “A Robust Layered Control System for a Mobile Robot”, IEEE Journal
of Robotics and Automation 2(1), 14-23 (1986).

2. Chern Han Yong and Risto Miikkulainen, Cooperative Coevolution of Multi-Agent
Systems, Technical Report AI01-287

3. D. Floreano, S. Nolfi, and F. Mondada, Competitive Co-Evolutionary Robotics:
From Theory to Practice. In R. Pfeifer, editor, From Animals to Animats V: Pro-
ceedings of the Fifth International Conference on Simulation of Adaptive Behavior,
MIT Press-Bradford Books, Cambridge, MA, 1998.

4. Hitoshi Iba, Emergent cooperation for Multiple Agents using Genetic Program-
ming, in Parallel Problem Solving form Nature IV (PPSN96), 1996, 32-41

5. Hitoshi Iba, Evolving Multiple Agents by Genetic Programming, Genetic Program-
ming 3, Spector, L.Langdon, W.B., O’Reilly, U.-A., and Angeline, P.A.,(eds), MIT
Press, pp447-466, 1999.

6. M. Terao and Hitoshi Iba Controlling Effective Introns for Multi-Agent Learning
by Genetic Programming, in Proc. of the Genetic and Evolutionary Computation
Conference (GECCO2000), pp419-426, 2000

7. J. R. Koza, Evolution of subsumption using genetic programming, in F. J. Varela
and P. Bourgine (Eds.) Toward a Practice of Autonomous Systems, pp. 110-119
Cambridge, MA: MIT Press. 1992.

8. K. Yanai and H. Iba Multi-agent Robot Learning by Means of Genetic Program-
ming: Solving an Escape problem, in Evolvable Systems: From Biology to Hard-
ware, 4th International Conference (ICES2001), pp 192-203. 2001

9. Matt Quinn, A comparison of approaches to the evolution of homogeneous
multi-robot teams, In Proceedings of the Congress on Evolutionary Computation
(GECCO2001) pp. 128-135, Seoul, S. Korea. IEEE Press, 2001

10. Nolfi S. and Floreano D., Evolutionary Robotics: The Biology, Intelligence, and
Technology of Self-Organizing Machines. Cambridge, MA: MIT Press/Bradford
Books, 2000.

11. P. Nordin and W. Banzhaf., An on-line method to evolve behavior and to control
a miniature robot in real time with genetic programming, Adaptive Behavior,
5(2):107– 140, 1997

12. W. F. Punch and W. M. Rand,GP+Echo+Subsumption = Improved Problem
Solving, in Proc. of the Genetic and Evolutionary Computation Conference
(GECCO2000), pp. 411-418, 2000


