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Abstract. This paper proposes an algorithm for combinatorial opti-
mizations that uses reinforcement learning and estimation of joint prob-
ability distribution of promising solutions to generate a new population
of solutions. We call it Reinforcement Learning Estimation of Distribu-
tion Algorithm (RELEDA). For the estimation of the joint probability
distribution we consider each variable as univariate. Then we update the
probability of each variable by applying reinforcement learning method.
Though we consider variables independent of one another, the proposed
method can solve problems of highly correlated variables. To compare
the efficiency of our proposed algorithm with other Estimation of Dis-
tribution Algorithms (EDAs) we provide the experimental results of the
two problems: four peaks problem and bipolar function.

1 Introduction

After the introduction of Genetic Algorithm (GA) it has been widely used for
the optimization of problems because it is easy to use and can be applied in
a problem with little prior knowledge. The heart of GA is its selection and re-
combination of promising solutions; however, crossover and mutation of GA are
problem specific and hence success depends on the choice of these parameters.
They do not consider problem specific interactions among the variables called
linkage information. As a result, the prediction of the movements of the pop-
ulations in the search space is difficult in GA. Holland[12] introduced the idea
that linkage information would be beneficial for Genetic Algorithms. Following
his idea, Goldberg et al.[7], Harik [9]and Kargupta[13] extended GA by either
changing the representation of the solutions or evolving recombination operators
among individual solutions to process the building blocks. Recently, there have
been proposed evolutionary algorithms based on the probabilistic model where
selection and recombination of building blocks of Genetic Algorithm are replaced
by generating new solutions by sampling the probability distribution which is
calculated from the selected promising solutions. These algorithms are called Es-
timation of Distribution Algorithms (EDAs) [17] or Probabilistic Model-Building
Genetic Algorithms (PMBGAs) [20]. As the EDAs try to capture the structure
of the problem, EDAs are thought to be more efficient than GAs.



The purpose of this paper is to introduce a new Estimation of Distribution
Algorithm (EDA) that uses Reinforcement Learning (RL) method and marginal
probability distribution of selected individuals in order to generate new solu-
tions. We call this algorithm Reinforcement Learning Estimation of Distribution
Algorithm (RELEDA). The proposed method extends existing EDAs to solve
difficult classes of problems more efficiently and accurately. We consider vari-
ables as univariate and calculate their marginal distributions accordingly. We
then update the probability vector of the variables by reinforcement learning
method using these marginal distributions and the best fit individual of a gen-
eration. New individuals (solutions) are generated by sampling this probability
vector. The experiments were done with the four peaks problem and bipolar
function which are very difficult for some EDAs to optimize. The experimental
results show that our proposed algorithm is able to solve the tested problems
more efficiently.

In section 2 and 3, we provide the background needed to understand the mo-
tivation of our algorithm. Section 4 describes the proposed algorithm. In section
5, a short review of different existing EDA approaches are presented. Section
6 describes the test functions and presents the experimental results on these
problems. Section 7 addresses our future work. The summary and conclusion
are provided in section 8.

2 Optimizations by Free Energy Minimization

Before we proceed, we need to give some mathematical notations. The variable X

denotes the set of n discrete binary variables { X1, Xs, ..., X, } and z denotes the

set of values of these variables. The search space is S = {0,1}". p(x) is the joint

probability of X and f(x) denotes the function to be maximized (minimized).
The Gibbs distribution of a function f(z) at given temperature T is

p(x) = (1)

I s .
where Z =37 cge” 7 is the partition function.

When T — 0 the Boltzmann distribution converges uniformly to one of
the global optima. The Metropolis algorithm, whose stationary distribution is
precisely Boltmann distribution, samples from p(z) to generate solution for op-
timization task. When it is not possible to calculate p(x) precisely one approxi-
mates it with a target distribution pr(z) using Kullback Leibler (KL) divergence.
The KL divergence is

Dpr(z),p(x) =0 Z + (B~ TS) 2)

where E and S are internal energy and entropy of the system and F' = F —
TS is the free energy. Here F' is a function of p(z). So by minimizing F' one
can minimize KL divergence. In order to minimize the F' we need to know all



probability distributions of the variables in the search space. Instead, the search
to probability distributions can be reduced to a small number of parameters
denoted by 0 = {61,02,...,0,} where 6; € IR is a parameter related to the
probability of the variable X; through a function and the joint probability is
denoted by p(x, ) which is differentiable with respect to its parameters for each
x € S. Therefore, F is differentiable with respect to #. Thus the problem has
been transformed from the search in discrete domain to continuous domain. The
update rule of the parameter 6 can be found by defining a dynamical system by
the ordinary differential equation: % + ‘;—5 =0 . After inserting the values of F’
we obtain by some calculations:

de op(x, )

% +$6S(f(x) +T(1 +lnp($>9))) 59

=0. (3)
Then the basic update rule proposed by Berny[4] for gradient descent is as

follows:
AQ:faU@ﬂ+TG+Mp@ﬁ»ﬁ%;9) (4)

where a > 0 is a small constant called learning rate.

3 Reinforcement Learning

In reinforcement learning an agent is connected to its environment through per-
ception and action. At every step of interactions the agent gets some input
signals and indications of current state of the environment, and then the agent
chooses some actions to produce output. The action changes the state of the en-
vironment, and the value of this transition is sent back to the agent as a scalar
reinforcement signal. Here learning is unsupervised, and the agent modified its
behavior to maximize or minimize the reinforcement signal. Williams[22] in his
REINFORCEMENT Algorithm for learning with associative networks has used
the following incremental rule for the updating of the weight of the connection
from input ¢ to unit j(w;;):

6lng;
Awij = aij(r — bz‘j)m (5)
where o is the learning rate, r is the reinforcement signal, b;; is a reinforcement
baseline and g; is the probability of the output of unit ¢ given the input and the
weights to this unit. For combinatorial optimizations Berny[4] has used cost
function (fitness) as reinforcement signal and low cost binary string as agent’s

output. His reinforcement algorithm is:

0lnp(x,0)
00;

where f(z) is the cost function, p(z,6) the joint probability distribution and 6;

is a parameter related to the probability of i*® variable (p;(x;)), b; is the baseline
and « is the learning rate.

Ab; = o f(x) — b;) (6)



The baseline (b) is updated by the recursive formula:

b(t +1) = yb(t) + (1 — ) f((t)) (7)

where 0 < v < 1 is the baseline factor. He (Berny) has called this baseline update
rule as expectation strategy where, if a randomly generated solution x has cost
f(z) lower than average cost, the agent takes the solution more likely.

4 Reinforcement Learning Estimation of Distribution
Algorithm (RELEDA)

In RELEDA we consider no interactions among the variables. Then the joint
probability (p(z, 8)) becomes:

p(x,0) = [ [ pi(w) (8)
i=1

where p;(x;) is the probability of X; = 1.
The correlation between p;(x;) and 6; is expressed through the sigmoid func-
tion:

1 1+ tanh(56;)) 9)

pi(w;) = 5(

where 3 is the sigmoid gain. Now

dnp(x,0) 1 opi(a;)

36; - pilz)  06;
=26(1 — pi(zs)) -

Inserting this value into (6) we get:

A0; = 2ap(f(x) — bi)(1 — pi(z:)) - (10)

To incorporate EDA we change these equations according to our needs. We shall
decompose the equations into variable levels, i.e. we replace the cost function
with the value of the variable of that position in the best fit individual. We
rewrite the two equations (10) and (7) as follows:

Ab; = a(bi — pi(z:))(1 — di) (11)
[where we have put a = 2a] and
bit +1) = ybi(t) + (1 — ) (12)

where d; is the marginal distribution of the variable X; and z; is the value of
the variable X; in the best individual in that generation. Marginal distribution
d; is calculated from the selected individuals in a generation by the formula:

S 0(X=1)+1

di = ==
N +2

(13)



where

§;(X; =1) = 1if in j' individual X; =1

= 0 otherwise.

During calculation of marginal distributions we have used Laplace correction [8]
in equation (13) to make sure that no probability is 0.
We update each 6; by using equation (11) as follows:

0; = 0; + A, . (14)

According to equation (11) each 6; is updated by a small amount if either the
marginal distribution is closing to 1 or the value of the the variable X; is 0. Since
the baseline is dependent on X;, the reinforcement signal (baseline) b; plays a
role in controlling the directions of the probability of each variable.

4.1 Algorithm

Our resulting algorithm now is a combination of reinforcement learning and

EDA. Here is the algorithm:

Initialize 6; and b; (p;(x;) will be calculated according to equation(9)).

Generate initial population.

Select N promising individuals.

For i =1 ton do

(a) Calculate marginal distribution (d;) according to equation(13).

(b) Update b; according to equation(12).

(c) Update 6; by equation (14) and find p;(x;) by equation (9).

5. Generate M offspring by sampling the probabilities calculated in the previous
step.

6. Create new population by replacing some old individuals with offspring (M).

7. If termination criteria not met, go to step (3).

=W

The initial parameter p;(x;) should chosen such that p(z,#) is uniform. The
algorithm runs until either an optimal solution is found or the allowed maximum
no. of generations have passed.

5 Other EDA Approaches

The two main steps of EDAs are to estimate the probability distribution of
selected individuals (promising solutions) and generate new population by sam-
pling this probability distribution. There is no simple and general approach to
do these efficiently. Different EDAs use different models for the estimation of
probability distribution.

Univariate Marginal Distribution Algorithm (UMDA) [15], Population Based
Incremental Learning (PBIL)[1] and Compact Genetic Algorithm (CGA) [11]



treat variables in a problem as independent of one another. As a result, n-
dimensional joint probability distribution factorizes as a product of n univariate
and independent probability distributions. PBIL and CGA use a probability
vector while UMDA uses both a probability vector and a population. The update
rules of probability vector of PBIL and CGA are different.

Mutual Information Maximizing Input Clustering Algorithm (MIMIC) [5],
Bivariate Marginal Distribution Algorithm (BMDA) [21] and Combining Opti-
mizers with Mutual Information Trees (COMIT) [3] consider pairwise interac-
tions among variables. These algorithms learn parameters as well as structure of
the problems. They can mix building blocks of order one and two successfully.

Bayesian Optimization Algorithm (BOA) [19], Estimation of Bayesian Net-
works Algorithm (EBNA) [14], Factorized Distribution Algorithm (FDA) [16]
and Extended Compact Genetic Algorithm (ECGA) [10] use models that can
cover multiple interactions among variables. BOA and EBNA both use Bayesian
Network as structure learning but different score metrics. BOA uses Bayesian
Dirichlet equivalence (BDe) scores while EBNA uses K2+Penalization and Bayesian
Information Criterion (BIC) scores to measure the likelihood of a model. FDA
can be applied to additively decomposable problems. It uses Boltzmann selection
for Boltzmann distribution. In ECGA the variables of a problem are grouped
into disjoint sets and marginal distributions of these sets are used to compress
the population of selected individuals. This algorithm uses the Minimum De-
scription Length (MDL) approach to measure the goodness of a structure. All
these multivariate algorithms can produce a good solution with the sacrifice of
computation time.

A detailed overview of different EDA approaches in both discrete and con-
tinuous domains can be found in [14]. For applications of UMDA with Laplace
corrections in binary and permutation domains, see [18].

6 Experiments

The experiments have been done for functions taken from [19] and [2]. In these
functions of unitation variables are highly correlated. The following section de-
scribes the function and presents the results of the experiments.

6.1 Test Functions

Before we define our test functions, we need to define elementary function like
deceptive function taken from [19].
A deceptive function of order 3 is defined as

09 ifu=0
08 ifu=1

3 —

fdec(X) - 0 ifu=2 (15)
1 ifu=3

where X is a vector of order 3 and wu is the sum of input variables.



A bipolar deceptive function of order 6 is defined with the use of deceptive
function as follows:

.fl?ipolar = fél)’ec(|3 - U|) . (16)

Bipolar function has global solutions of either (1,1,1,1,1,1) or (0,0,0,0,0,0).
So non overlapping bipolar function for the vector X = (X1, Xo,...,X,,) is

defined as:
n/6

fbipolar(X) = Z fl?ipolar(si) (17)
i=1

where S; = (X¢;_5, X6i_4, - - - , Xgi)- Bipolar function has total 2% global optima
s
and <§> local optima, making it highly multimodal. According to Deb and
Goldberg [6] all the schema of order less than 6 misleads Simple Genetic Al-
gorithm (SGA) away from the global optimum into a local one for this bipolar
function.
Another test function is the four peaks problem taken from [2]. The function
is defined as
fapear(X) = maz(z(X), o(X)) + R(X) (18)

where z(X) is number of trailing Os in the vector X = (X3, Xs,...,X,,) and
o(X) is the number of leading 1s in X. R(X) is a conditional reward defined

with the threshold s = 1"—0 as

R(X) = {n if 2(X) > sand o(X) > s

0 otherwise. (19)
The function has global optimum of the form: first and last (s+ 1) bits are all 1
and 0 respectively and the remaining (n — 2s — 2) bits in the middle are either
all Os or all 1s. As n increases, local optima increase exponentially while global
optima decrease in the same rate, making local search methods trapped into
local optima [2].

6.2 Experimental Results

Here we present the experimental results running the algorithm on a computer
with 1133 MHZ Intel Pentimum (IIT) Processor and 256 MB of RAM and in
Borland C++ builder 6.0 environment. For all the problems, the experimental
results of our algorithm of 50 independent runs are provided.

For all the problems, the algorithm runs until either an optimal solution is
found or the maximum no. of generations has passed. This is somehow different
from [19] where a population is said to be converged when the portion of some
values in each position reaches 95%. In each run of the algorithm we apply trun-
cation selection: the best half of the population is selected for the estimation
of marginal probability distribution. Then we update the probability vector of
the variables by reinforcement learning method using these marginal distribu-
tions and the best fit individual of a generation. For the bipolar function and



four peaks problem, we set the baseline factor v = 0.1, learning rate a = 0.9,
elite=50%, maximum no. of generations=30000 and population size=10%n where
n is the size of the problem. We set initial probability of each variable p;(x;) = %;
hence 6; = 0. The baseline is initialized by setting each b; = 1. Our replacement
strategy is elitism so that the best individual of a generation is not lost, and the
algorithm performs gradient ascent in search space.

To compare the experimental results of our proposed algorithm with those of
PBIL and UMDA, we apply these algorithms to the bipolar function and only
PBIL to the four peaks problem. We set the population size, maximum no. of
generations and the rate of elitism for PBIL and UMDA with the same values
as those for RELEDA. The best half of the population is selected for the calcu-
lation of marginal probabilities of the variables. We apply Laplace corrections
during calculation of marginal probabilities. We also use the same selection and
replacement strategy as those of RELEDA for PBIL and UMDA .

For the bipolar function, we set sigmoid gain § = 0.1 and learning rate for
PBIL=0.9. In table 1 we show no. of fitness evaluations required for bipolar
function by RELEDA, PBIL and UMDA until an optimal solution is found.
In addition to convergence to a solution, RELEDA can discover a number of
different solutions out of total 2% global optima. For problem sizes of 12 and 24,
it finds all the global optima only in 50 runs. For higher size problems, it discovers
different global optima. So our algorithm can be used to find multiple solutions
of a problem. For the problem size of 84, we provide results of 8 independent
runs of PBIL and 15 of UMDA. For the problem size of 96, neither PBIL nor
UMDA converged to any solution at all within the maximum no. of generations.
We have indicated it in the table by inserting ‘Not Available (NA)’.

Figure 1 and 2 show graphical views of average no. of fitness evaluations
required by RELEDA vs PBIL and RELEDA vs UMDA respectively for the
bipolar function. We show the experimental results in two graphs because in one
graph it is very difficult to distinguish between the graph of PBIL and that of
UMDA. Both PBIL and UMDA require almost the same no. of fitness evaluations
to find an optimal solution of the bipolar function.

Table 1. No. of fitness evaluations required until an optimal solution of the bipolar
function is found

Problem|Average Standard Deviation
Size| RELEDA PBIL UMDA |RELEDA PBIL UMDA
12 750.00 897.60 784.80|  532.98 645.31 569.83
24| 13608.00| 26940.00| 31920.00f 6502.86] 14959.58| 15607.80
36| 77918.40| 123577.20| 121096.80| 53929.71| 36238.56| 38886.05
48| 256089.60| 488745.60| 512227.20{109425.70| 132108.30| 136246.98
60| 529278.00|1521948.00(|1418778.00|250798.44| 548318.17| 508102.96
72|1014084.00|3718238.40|3802471.20{621080.42|1310214.60{1268969.22
84/1855072.80(9372510.00{9164064.00|774195.88| 869822.56|1432628.32
96(2366457.60 NA NA|765031.96 NA NA
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For the four peaks problem, we set sigmoid gain 8 = 0.5 and learning rate
for PBIL=0.005 (as used in [2]). The results are shown in table 2. Graphical
representation of average no. of fitness evaluations required by RELEDA and
PBIL for the four peaks problem is shown in figure 3.

6.3 Discussion on Experimental Results

The proposed algorithm finds optimal solutions of those problems which are
very hard for simple GA (SGA) to solve. Deb and Goldberg [6] have said that in
fully deceptive function with subfunctions of order k all the schema of order less
than k mislead SGA away from the global optimum into a local one. In similar
fashion, these deceptive functions are very hard for some EDAs. RELEDA finds
optimal solutions of those problems in fewer no. of fitness evaluations because
it involves a nonlinear function of hyperbolic tangent. Though the marginal
distribution of a variable calculated from the selected individuals may be zero,
the probability of that variable in RELEDA will not be zero. But in UMDA
it will be zero. RELEDA actually shifts the probability of a variable in either
directions depending on the values of the parameters by a small amount. Our
algorithm has some biases to the best fit individual of a generation. As we start
with the initial probability of a variable 0.5, if that variable in the best individual
of the first generation is 0, the algorithm tends to produce 0 for that variable.
That is why the algorithm finds optimal solutions of more Os than 1s of the



Table 2. No. of fitness evaluations required until an optimal solution of the four peak
problem is found

Problem|Average Standard Deviation
Size RELEDA| PBIL|RELEDA PBIL
10 286 395 138.15 336.20

20 2366| 38350 1027.30| 8889.35
30 9219| 189390 4765.65| 63131.02
40 24904| 462660| 14858.31| 75257.90
50 84085| 643950 59619.60| 52987.26
60| 181224[1204290(159526.53|154901.78
70| 316764(1337735|264597.58| 92907.18
80| 512280(1832760(425668.28(217245.50
90| 715248|2283975|750726.15(262165.18

problems stated above quickly and sometimes terminates with no solutions at
all within allowed maximum no. of generations.

BOA seems to be a promising algorithm for the functions of unitation, but
it takes more time to find a good Bayesian network for the selected individuals.
And the learning of Bayesian Network is an NP-hard problem, but our proposed
algorithm can quickly converge to an optimal solution.

7 Future Works

Our proposed algorithm is dependent on many parameters such as learning rate,
sigmoid gain, baseline factor, population size etc. We are now investigating how
to control these parameters for quick convergence and lesser fitness evaluations.
Another question is how it can be applied to multiary search space. In this
paper we have considered all variables as binary, but real world variables can
take values from multiary alphabet as well as from continuous domains. We have
to find some methods to make our algorithm generally applicable to all problems.
RELEDA assumes no dependency among variables, but in real life problems
variables are highly correlated. Problems in permutation domains are very dif-
ficult to optimize. There are very few EDAs for combinatorial optimization in
permutation domains. We shall investigate an algorithm for such kind of prob-
lems. And finally, we shall try to apply this algorithm to real world problems.

8 Summary and Conclusions

In this paper we propose the Reinforcement Learning Estimation of Distribution
Algorithm (RELEDA). Our algorithm is a combination of the Estimation of Dis-
tribution Algorithm and Reinforcement Learning. We calculate marginal proba-
bility distribution of each variable using the selected individuals of a generation.
Then the probability of a variable is updated using this marginal probability and
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the best fit individual of that generation. By sampling the probability vector of
the variables, new solutions are generated.

The RELEDA is designed to solve problems in binary search space. It can
solve problems with some correlated variables. With appropriate values of differ-
ent parameters, it can solve problems of diverse directions. In the experiments
we have shown that it can outperform some existing EDAs in terms of no. of
fitness evaluations required to produce an optimal solution.
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