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Abstract— In order to acquire useful motions of a real-world
robot, it is necessary to carry out learning in a real environment.
However, learning is difficult within a real environment. In
addition, the acceleration of learning is required for a practical
execution.

In this paper, we propose an approach to the learning
acceleration using data retrieved from the real environment.
This consists of the method of automatically constructing the
simulator from real data and of learning a robot controller with
the simulator. The experimental results suggest that our GP-
based technique enables the effective controller learning.

I. INTRODUCTION

In order to automatically acquire the motion of a robot
that moves in a real environment, it is important to select
the effective learning method for the robot. There are three
conceivable learning methods [10]: learning by simulation,
learning from the real environment, and learning by using a
combination method of these two. All of these methods have
their own trade-offs. There is a difference between simulation
and a real environment, and it is not possible to guarantee
that the results obtained by simulation will work in a real
environment. However it is troublesome to move a robot in
a real environment, and it takes too much time to complete
the learning only in a real environment. To overcome this,
it is necessary to accelerate the learning process by using
simulation.

Several methods that utilize not only simulation but also
motion in a real environment have been proposed. Nordin et
al. carried out research into a method of controlling a robot by
acquiring a world model using GP [8]. The learning algorithm
consists of memorizing, learning and planning. First, when
the robot moves, the result of this motion is memorized as
one event. The state value of the environment is assigned to
this event by using a pre-determined evaluation function. In
the learning process, a memorized event is used to generate a
function that predicts the state value of an inexperienced state
using GP. This prediction function is considered as the world
model (i.e., environmental model).

Grefenstette et al. have proposed anytime learning [2]. They
used this method for agent learning in a pursuit problem. The
learning system contains an environmental simulation model.
The agent’s strategy is created using this simulation model.
In addition, the simulation model is refined when a difference
between the behavior of the target in the real environment and
the behavior in the simulation model is detected. In this way,

it is possible to bring the simulation model closer to the real
environment using the behaviors in the environment. However,
all of this research was done by computer simulation. The
input data that can be acquired by a robot in a real environment
consist of image data, and so on, hence processing to obtain
the desired data is generally complicated. Consequently, it is
difficult even to detect the difference between the behavior of
the target in the environment and the behavior in the simulation
model. This problem arises because the simulation model is
constructed from the human viewpoint.

Parker et al. proposed punctuated anytime learning [9], [10].
In this method, learning was done by an evaluation function
in the computer. However, at every several generations, some
of individuals were evaluated in the real environment, and the
results thereof were incorporated in the evaluation function
in the computer. Consequently, it was possible to acquire
behavior that adapted to changes in the environment while
reducing the evaluation time in the real environment. Although
this method is very interesting, the model for the evaluation
and environment used has been greatly simplified. Thus, it
may be difficult to apply the model to other robots without
change.

We have proposed an real-time learning method for a robot
and showed experimental results in the prior researches [5],
[4]. This method acquires the fundamental behavior using GP
in a simple simulation, performs Q-learning using a real robot,
and adapts the behavior to the real environment. In [4], we
used a humanoid robot for the experiment. This robot took
about 10 seconds to perform one motion. For this reason, it
is not reasonable to carry out learning until Q-learning has
converged completely.

We can collect real data concerning the environment be-
cause the robot behaves in the real environment. Therefore,
we should use these data. A simulation model should be con-
structed using these data. This approach reduces the difference
between the real environment and the simulation model.

In this paper, methods of automatically constructing a
simulator are studied. First, a method of constructing a sim-
ulator based on data obtained from the real environment is
investigated. Next, the resulting simulator is used to carry out
training of the robot controller.

The organization of this paper is as shown below. The next
section describes the construction of the simulator used in this
research. Section III describes the setting of the target task



performed in this research. Sections IV and V express the
tests and their results. Section VI describes future issues, and
section VII gives some conclusions.

II. CONSTRUCTION AND UTILIZATION OF A SIMULATOR

By moving the robot in a real environment, it is possible
to acquire data related to that environment. Provided that
the environment has the Markov property [11], the data are
expressed using the state of the environment (st), the action
of the robot at that time (at), and the resulting state of this
action (st+1), as follows:

(st, at) 7→ st+1 (1)

The environmental model (i.e., simulator) is a function for
predicting the effect of an action in an inexperienced state. In
other words, it is equivalent to the following function f in a
mathematical form:

st+1 = f(st, at). (2)

We can estimate this function from the generalization of the
currently possessed data. In this paper, we propose to use a
function approximation method (described in section III) for
acquiring of this function (simulator). If a simulator can be
obtained, we can use any learning algorithm whatever on it.

We can regard Q-learning as an approximation method of
the function f based on a sampling by an agent. However, the
model in Q-learning (i.e., the Q-value) is closely connected to
the reward. Although Q-learning cannot reuse the model for
other tasks, our approach can reuse the simulator only with a
change of the subject function. Moreover, the Markov property
of the environment is not necessarily assumed for our approach
(it depends on the setting of the simulator).

In addition, our method has the following advantage. Each
time the robot moves, data are obtained, making it possible to
train the simulator with an increasing amount of those data.
This is what we call an incremental learning. Data may well
contain real noise due to the real environment. The overfitting,
therefore, is avoided by utilizing these characteristics of the
data, as can be seen in the later section.

III. TASK SETTING

The target task is the “box moving” task for the “HOAP-1”
humanoid robot (Fig. 1), which was performed in our prior
research [4]. The goal of this task is to have the robot move
a box to the front of the designated mark (goal marker). The
robot uses a CCD camera installed on its head to recognize
the box and the goal marker. The strength of the robot’s arms
is weak. Thus, the robot does not move the box with its arms,
but instead pushes it with its knees. Because the robot walks
on two legs, complex motion is sometimes involved in moving
the box. It is difficult to create a simulator that can accurately
express this situation.

In this research, we dealt with real data acquired when we
performed a learning of the task using the robot in the real
environment for six hours. These data consist of input image
data (i), the action selected at that time (a), and next input

Fig. 1. The humanoid robot “HOAP-1”, the box and the goal marker.
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Fig. 2. Input image data.

data after the action (i′), recorded as one set. The action is
selected from seven actions: i.e., Forward (6 steps), Left-turn,
Right-turn, Left-sidestep (one step to the left), Right-sidestep
(one step to the right), the combination of Left-turn and Right-
sidestep, and the combination of Right-turn and Left-sidestep.
The recorded input image data (i) consist of the position of the
geometrical center of the box in the image, the position of the
geometrical center of the goal marker, and the horizontal width
of the goal marker (used to obtain the approximate distance to
the goal marker). Fig. 2 shows a sketch of the input image data.
In this research, for the sake of simplicity, we do not use the
data acquired when the robot lost sight of the box or the goal
marker. These data are obtained by performing measurement
in the real environment. Note that it contains noise.

By using the function approximation method, the input data
after the robot moves (i′) are predicted based on the current
data i and a. The data prediction error is evaluated as the
squared error E = |i′

real − i
′

predict|
2. While learning takes place

based on this prediction error, the generality of the resulting
function is important. For this reason, it is necessary not only
to carry out learning using training data, but also to evaluate
the resulting function with the test data [6]. The number of
training data sets provided was 1,210. For the test, 100 sets
different from the training data were used.

In this research, two function approximation methods for
acquiring a simulator were used for the comparison: i.e.,
Genetic Programming (GP) and a clustering approximation
method.

A. GP

To acquire the simulator, we have to estimate the function
f in (2). This is a so-called regression problem.

Table I shows functions and terminals of the GP we used.
This is a strongly-typed GP [7]: i.e., each function and terminal
has a specified type. In addition, each function’s argument
is constrained to have a specific type. The function if-



TABLE I

GP FUNCTIONS AND TERMINALS IN THE EXPERIMENT I IN BNF

NOTATION.

An individual of the GP ::= PREDICTION
PREDICTION ::=
‘(’ if-action-eq-then-else ACTION PREDICTION PREDICTION ‘)’ |
‘(’ box-moves COORD COORD ‘)’ |
‘(’ goal-moves COORD COORD COORD ‘)’ |
‘(’ prog2 PREDICTION PREDICTION ‘)’ | nop
ACTION ::=
‘(’ or ACTION ACTION ‘)’ | action-any |
action-fwd | action-turn-l | action-turn-r |
action-step-l | action-step-r |
action-turn-step-l | action-turn-step-r
COORD ::=
‘(’ if-lt-then-else COORD COORD COORD COORD ‘)’ |
‘(’ if-gt-then-else COORD COORD COORD COORD ‘)’ |
‘(’ + COORD COORD ‘)’ | ‘(’ - COORD COORD ‘)’ |
‘(’ * COORD COORD ‘)’ | ‘(’ / COORD COORD ‘)’ |
box-x | box-y | goal-x | goal-y | goal-width |
0.5 | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 | 9.0

action-eq-then-else executes its second argument if
the selected action at the time matches with its first argument
(this can be a logical expression using or). Otherwise, it
executes its third argument. The function if-lt-then-
else (if-gt-then-else) executes its third argument if
the value of its first argument is smaller (larger) than that of
its second argument. Otherwise, it executes its fourth argu-
ment. Functions box-moves and goal-moves output their
prediction values. Two arguments of box-moves express
changes in the position (x, y) of the box after one action.
Three arguments of goal-moves express changes in the
position (x, y) and the horizontal width of the goal marker.
Terminals in COORD (box-x, box-y, goal-x, goal-y,
goal-width) are values of the coordinate (x, y) of the box,
the coordinate (x, y) of the goal marker and the horizontal
width of the goal marker at the time, respectively.

B. Clustering Approximation Method

We also use another method which automatically constructs
the state space of Q-learning (“the second method” described
in [12]). This method divides data acquired from the real
environment into several clusters and constructs the approx-
imation model for each cluster. We call this method as the
clustering approximation. In our study, however, we exclude
reward information from the approximation model. This is
because our purpose is to construct the simulator according
to the environment.

1) Model Construction [12]: Data d acquired by the robot
from the environment are defined as follows:

d =< a, i, i̇′ > . (3)

We can define a local approximation model when these
data are given. This local approximation model is a linear
approximation of the data as follows:

i̇′ = Ai + b. (4)

The detailed algorithm of constructing the local model is
described below, where ai is ith action in an action set.

1) Let C be a set of all d which contains the action ai.

2) Apply the weighted linear regression method so as to fit
the local model (4) to the above set C.

3) If the unbiased variance of its residual exceeds a certain
threshold, then

a) Divide C into two clusters (C1, C2) using the
clustering method with the weighted Euclidean
norm as its similarity.

b) Go back to step 2) with C := C1.
c) Go back to step 2) with C := C2.

This method divides the data into several clusters. Each cluster
has the coefficient A and the constant b which represent the
local model (4).

2) Prediction by the Local Approximation Model: We can
predict the effect of an action in an unknown state (i.e.,
unobserved input data) using the above local model as the
simulator. For the prediction, the nearest cluster to the current
input i is searched for. The distance between an input and a
cluster is defined by the distance between the input and the
most similar data to the input which belongs to that cluster.

IV. EXPERIMNT I: SIMULATOR CREATION BY

INCREMENTAL LEARNING

We performed experiments to create a simulator using the
abovementioned two methods. In a real robot, the timing at
which data are acquired differs from one system to another.
In one robot, it may be one set of data per an action, while
in another acquiring many data may be possible even within
an action. In addition, the acquired data can be utilized
immediately, or it may be possible to wait until a certain
amount of data has been accumulated. In other words, the
designer can decide the timing at which to increase the training
data.

With GP, tests were started from ten sets of training data,
and were then performed in three ways: (1) the case where the
training data were increased by four sets up to 350 generations,
(2) the case where they were increased by five sets up to 250
generations, and (3) the case where they were increased by
10 sets up to 150 generations, every generation. However, the
number of the training data were not increased past 1,210.
The test data always contained 100 sets of data. The clustering
approximation method is not an incremental learning. Thus, it
was experimented with fixed training data sets.

A. Results of GP

In order to perform the incremental learning using GP, it is
considered necessary to maintain a certain diversity. Accord-
ingly, in each generation, randomly generated individuals were
introduced into the population (indicated as “new” parameter
in the later graph). The parameters used are shown in Table II.

The results are shown in Fig. 3. The horizontal axis is
the generation, and the vertical axis is the average prediction
error in the test data indicated by the best individuals in each
generation. The mark “inc” in the figure is the number of sets
of training data that increases in one generation. “cr” means
the crossover rate and “mu” means the mutation rate. The



TABLE II

PARAMETERS OF GP IN THE EXPERIMENT I

Population size 1000
Generations 150, 250, 350

Crossover rate 0.7, 0.8
Mutation rate 0.10, 0.05

Rate for introducing random individuals 0.1
Trials 10
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Fig. 3. The average prediction error by GP in the experiment I.

prediction error continues to decrease with generations, and
overfitting has not occurred.

The figure shows each final value of prediction error is
similar to others. This means the final performance depends
upon parameters of the genetic operator, but does not depend
upon the way in which the number of the training data
increases.

B. Results of Clustering Approximation Method

We used k-mean clustering as the clustering method in this
study. k-mean clustering needs the upper bound of the variance
in a cluster for the termination condition. This upper bound
affects the performance (i.e., the granularity) of clustering. We
performed this experiment with the following upper bounds:
1,000, 2,000, ..., and 10,000. The numbers of training data
used were 300, 600, 900 and 1,210.

Figure 4 shows the result. The horizontal axis is the upper
bound of the variance. With respect to the number of training
data, the error is the largest with 300 sets of the training data
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Fig. 4. The average prediction error by the clustering approximation method
in the experiment I.

TABLE III

GP FUNCTIONS AND TERMINALS FOR THE LEARNING OF THE

CONTROLLER IN EXPERIMENT II.

an individual of GP ::= ACTION
ACTION ::=
‘(’ if-lt-then-else COORD COORD ACTION ACTION ‘)’ |
‘(’ if-gt-then-else COORD COORD ACTION ACTION ‘)’ |
action-fwd | action-turn-l | action-turn-r |
action-step-l | action-step-r |
action-turn-step-l | action-turn-step-r
COORD ::=
‘(’ + COORD COORD ‘)’ | ‘(’ - COORD COORD ‘)’ |
‘(’ * COORD COORD ‘)’ | ‘(’ / COORD COORD ‘)’ |
box-x | box-y | goal-x | goal-y | goal-width |
0.5 | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 | 9.0

TABLE IV

PARAMETERS OF GP FOR THE LEARNING OF THE CONTROLLER IN THE

EXPERIMENT II.

Population size 1000
Generations 50, 100

Crossover rate 0.7
Mutation rate 0.1

Rate for introducing random individuals 0.1
Trials 10

(all of them were out of the range). However, the more training
data were used, the better results were achieved. The average
prediction error became the smallest with 1,210 data sets. This
proves that the clustering approximation method is effective if
sufficient data are available for the training.

C. Summary

It was confirmed that a simulator could be acquired for the
incremental learning in which the training data were gradually
increased. With a large amount of training data set, the
performance of the simulator by the clustering approximation
method is better than that by GP.

The overfitting was not found by GP. This may be because
new training data are continuously added, so that the selective
pressure acts for the sake of generalizing the results of
learning.

The above results in GP would seem to indicate that the
performance does not depend upon the rate at which the
number of the training data is increased. This means that we
do not have to worry about setting the precise rate at which
the number of the training data is increased.

V. EXPERIMENT II: TRAINING A CONTROLLER USING THE

ACQUIRED SIMULATOR

A test was carried out to see whether or not a useful
controller for a robot could be trained using an automatically
generated simulator. In the same way as the tests carried out in
the previous section, the overfitting does not occur when the
incremental learning is carried out, and it is expected that the
prediction performance of the simulator will be improved with
learning. Accordingly, the following two methods are possible:

1) Experiment II-1: Method in which the controller is
trained using the best simulator obtained at a certain
generation (i.e., the simulator is fixed).



2) Experiment II-2: Method in which the controller is
trained while an improved simulator is used (i.e., the
best simulator for that generation is used).

The former method is the same as the normal learning using
a fixed fitness function. In the latter method, the box and goal
marker motion characteristics may possibly change every time
the simulator is improved.

As the simulator, those obtained by GP and the clustering
approximation method were used. The training data used to
train the controller were originally the same as those used
when training the simulator. However, in these experiments
noise was added so that the data were different from the
original ones.

In these experiments, we used GP for learning the controller.
The used function and terminal nodes are shown in Table III.
The parameters used are given in Table IV. A trial ends when
the robot either moves 30 steps or the coordinate of the box or
the goal marker gets out of the visible zone shown in Fig. 2.
The fitness function is defined as follows:

fitness =
1

N

N∑

i

steps
i
, (5)

where steps
i

means the number of steps to complete the ith
trial and N is the number of sets of training data. If the task
are not be accomplished, we assign 30 + (30 − valid steps

i
)

to steps
i

as a penalty. In this definition, valid steps
i

is the
number of steps to the point where the robot loses sight of
the box or the goal marker. The larger the number of steps
until the coordinate of the box or the goal marker gets out
of sight, the better is the fitness value. Equation (5) is also
used to evaluate the performance based on the test data with
letting N be the number of test data. The motion characteristics
of the box will change when the simulator is improved. For
this reason, a different fitness value will be assigned to an
individual every generation, even if the same training (test)
data are used to evaluate the same individual.

A. Experiment II-1: Training the Controller with a Fixed
Simulator

We performed the experiment to acquire the controller
with a fixed simulator. For the simulator evolved with GP,
the result of a typical single trial (Sect. IV-A) was used.
We chose two simulators from a typical run: i.e., the 50th-
generation simulator and the 150th-generation simulator. For
the simulator by clustering approximation method, we used
two results acquired with 510 and 1,210 training data. The
training data for the learning of the controller were produced
by adding some noise to the data available from the simulator
production.

The results are shown in Figs. 5-6. The vertical axis
indicates the average steps to achieve the task or the average
rate of successful trials. As can be seen from Fig. 5, the
success ratio of the learning is relatively small by the 50th-
generation simulator. This may be because the performance
of the simulator is not sufficient for the learning. In contrast,
regarding what was learned by the 150th-generation simulator,




�

�

�

�

�

���

���

���

��	

� ��� 
�� ��� ��� �����

�

�*
+,!-
�
�
��
���
� �
� ��
�
� �
�

��
���

�)������� ��� � ���

��� � /�� � ������� ��� � ��� 5 � $1% 0 ��� ���
����� � /�� � ������� ��� � ��� 5 � $1% 0 ��� ���

(a) The average steps to achieve the task.

��# �

��# ���

��# ��


��# ���

��# ���

��# �

��# ���

��# ��


��# ���

��# ���

� ��� 
�� ��� ��� �����

�

�*
+,!-
�*
� ��
� �
���
���
� �	
� �� *
	 �
� �
�

��
���

��������� ��� � ���

��� � /�� � ������� ��� � ��� 5 � $1% 0 ��� ���
����� � /�� � ������� ��� � ��� 5 � $1% 0 ��� ���

(b) The average rate of successful trials.

Fig. 5. The result of learning a controller by GP with the acquired simulator.
The simulator was evolved with GP in the experiment I. The performance was
shown for the test data.

TABLE V

PARAMETERS USED FOR Q-LEARNING IN THE EXPERIMENT II-1.

Learning rate 0.05/(1.0 + (total accumulated steps)/106)
Discount rate 0.8

Reward (successful trial) 1.0
Reward (failed trial) -0.01, -0.1

the number of steps was reduced to five, and its success rate
exceeded 96%. Therefore, it proved that an effective controller
has been acquired with this simulator.

Results with the simulator by the clustering approximation
method shows some improvement of the performance with
generations (Fig. 6). However, final results were not as good
as that with the simulator by GP in terms of both the number
of steps and the rate of the success.

For the sake of comparison, we have also experimented in
learning the controller with Q-learning. The state space of this
Q-learning is the same as that used in our prior study [4].
Table V shows parameters we chose in this experiment. We
cannot evaluate the controller using the same fitness function
(eq. (5)) with GP. This is because Q-learning evaluates an
agent by the reward. Thus, we used the reward value of 1.0
for a successful trial and the reward (penalty) of −0.01 (or
−0.1) for a failure.

Figs. 7 and 8 show the results of Q-learning with the simu-
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(b) The average rate of successful trials.

Fig. 6. The result of learning a controller by GP with the acquired simulator.
The simulator was produced by the clustering approximation method in the
experiment I. The performance was shown for the test data.

lator acquired by GP and by clustering approximation method,
respectively. Both results present relatively low average steps
and low success rate. Moreover, the higher rate of the success
was, the larger average steps were required. This indicates that
the acquired controller could only achieve the easy tasks which
required low steps to complete. Therefore, we can conclude
that the performance of the controller by GP is better than that
by Q-learning.

In the above experiment, the Q-learning acquired appropri-
ate actions only within easy situations. This is because Q-
learning needs the effective scheduling of the learning (e.g.
“Learning from Easy Mission” [1]). This scheduling may be
applicable when we use 2-D simulators which are manually
made for the learning. Then, we will be able to find easy
situations where both the robot and the box are near to the
goal marker. However, without a priori knowledge of the
environment, we cannot always distinguish the situations based
on input image data of objects. Therefore, the scheduling is
not possible in case of this type of learning.

B. Experiment II-2: Training a Controller with the Incremen-
tally Improved Simulator

Next, we performed experiments in acquiring a controller
with the improved simulator. The simulator by GP is based on
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Fig. 7. The learning result of the controller by Q-learning with the simulator.
The simulator was evolved by GP in the experiment I. The performance was
shown for the test data.

the resulting simulator of a typical single trial (Sect. IV-A).
The simulator by the clustering approximation, which is not
an incremental learning method, was reproduced every time
the number of the training data was increased.

The controller learning by GP began from each simulation
of the 0th, 50th and 100th generations. The training data were
the same with those by the simulator acquisition; i.e., ten data
sets were available in the initial generation and the number of
the data set was increased by ten every generation.

Figure 9 shows the results with the simulator by GP. The
average steps were reduced to about five and the success
rates were at least 0.9 in all cases at the final generation.
This indicates that the effective controllers were evolved
successfully. A large peak was observed around the 130th
generation.

Figure 10 shows the performance of the simulator we used.
A large change in the performance (about 500) was observed
around the 130th generation. This change affects the fitness
values of individuals. It seems that the large peak in Fig. 9 was
caused by the performance change of the simulator. Although
another large change occurred around the 80th generation,
we cannot observe the corresponding change in Figure 9.
Furthermore, if we use different simulators, the results of
the controller learning will be varied. We were sometimes
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(b) The average rate of successful trials.

Fig. 8. The result of learning the controller by Q-learning with the simulator.
The simulator was acquired by clustering approximation method in the
experiment I. The performance was shown for the test data.

not able to acquire the effective controller. Therefore, further
investigations are needed about the relation of the performance
between the simulator and the controller learning.

Figure 11 shows the results with the simulator by the clus-
tering approximation method. Many increases and decreases
were observed in the results. They may be caused by the
performance of the simulator, which was reproduced due
to increased training data sets every generation. Hence, its
performance is supposed to change every reproduction. These
changes will affect the controller learning with the simulator.

C. Summary

It has been confirmed that training a controller is possible
by the automatically acquired simulator. Experiments were
carried out to show the validness using the two possible
methods.

In the experiment II-1, we made experiments in the con-
troller learning with GP and Q-learning. The performance of
the controller with GP was superior to that with Q-learning.
The effective controller, which can complete the task with a
small amount of steps and with high success rate, was obtained
with a large amount of the training data by GP.

Based on the above observation, we can conclude that a
good choice would be to evolve the controller by GP with a
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(b) The average rate of successful trials.

Fig. 9. The result with the simulator by GP in the experiment II-2. The
performance was shown for the test data.
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Fig. 10. The performance of the simulator by GP used in the experiment
II-2.

large amount of training data set if we use the fixed simulator
for the controller learning. In addition, the simulator by GP
seems more suitable for the learning than the one by the
clustering approximation method.

In the experiment II-2, it was found possible to train a
controller while improving the performance of simulation. We
compared the simulator by GP and the one by the clustering
approximation method. With the simulator evolved by GP, it
was possible to obtain a useful controller with a success rate
of more than 90% at the 50th generation, even from the initial
generation of the simulator. The number of data sets at the
50th generation is the same as the one acquired during the
humanoid robot’s 1-hour learning (about 700 actions) in our
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Fig. 11. The result with the simulator by clustering approximation method
in the experiment II-2 (the performance in the test data).

prior research [4]. Even when the reinforcement learning is
used, for example, it is not possible to carry out the sufficient
learning. This fact implies that our learning approach is very
useful. However, the learning performance is affected by the
training situation, so it is necessary to conduct a more detailed
investigation concerning the learning of the simulator.

VI. FUTURE RESEARCH

The results of this research demonstrated the effectiveness
of simulator construction based on the data acquired from a
real robot. We would like to perform a verification by installing
this method on a real robot and carrying out the learning in
real time. The use of the acquired simulator is not limited
to the target task by which the simulator has been produced.
When the target task is changed, we may use the simulator
with necessary modification of the evaluation functions for
the new task if the environment is the same as before. This
will enable the robot to acquire the controller for the new
task immediately. We will plan to conduct the experiment to
confirm this idea.

In this research, it was assumed that all of the past data
could be used as training data. However, the question of how
much data should be retained remains an important problem.
If all of the data are accumulated, long learning time will be
required to construct the simulator. It should be possible to

efficiently select data based on the information criterion, such
as by preferentially accumulating data with large prediction
errors.

We are working on the extension of the proposed method for
the sake of applying to multi-agent environment, in which one
agent has to predict actions of other agents. This means that
the agent has to construct a model to predict others’ actions
in observing their past actions. We have some preliminary
experimental results in the multi-humanoid robot environment
(see [3] for details).

VII. CONCLUSION

An attempt was made to construct a simulator of the real
environment from sensor data (e.g. input image) obtained by a
robot moving in such a real environment. Two methods were
studied for that construction. In the incremental learning that
assumed a real situation, there were no signs of overfitting
when GP was used. Thus, it is expected that the prediction
performance of the simulator will progressively be improved
every time the learning is repeated.

As a result of the learning experiments using the acquired
simulator, GP evolved useful controllers successfully. Conse-
quently, based on a relatively small amount of experiences in
a real environment, we were able to carry out the effective
controller learning, and the learning has been accelerated
satisfactorily.
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