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Abstract— Recently, there has been a growing interest in
classification of patient samples based on gene expressions. Here
the classification task is made more difficult by the noisy nature of
the data, and by the overwhelming number of genes relative to the
number of available training samples in the data set. Moreover,
many of these genes are irrelevant for classification and have
negative effect on the accuracy and on the required learning time
for the classifier. In this paper, we propose a new evolutionary
computation method to select the most useful subset of genes for
molecular classification. We apply this method to three bench-
mark data sets and present our unbiased experimental results.

I. I NTRODUCTION

DNA microarray offers the ability to measure the levels
of expressions of thousands of genes simultaneously. These
microarrays consist of specific oligonucleotides or cDNA
sequences, each corresponding to a different gene, affixed to
a solid surface at very precise location. When an array chip is
hybridized to labeled cDNA derived from a particular tissue
of interest, it yields simultaneous measurements of mRNA
levels in the sample for each gene represented on the chip.
Since mRNA levels are thought to correlate roughly with the
levels of their translation products, the active molecules of
interest, the DNA microarray results can be used as a crude
approximation of the protein contents and the state of the
sample. Gene expression levels are affected by a number of
environmental factors, including temperature, stress, light, and
other signals, that lead to change in the level of hormones
and other signaling substances. A systemic and computational
analysis of this vast amount of data provides information
about dynamical changes in functional state of living beings.
The hypothesis that many or all human diseases may be
accompanied by specific changes in gene expressions has
generated much interest among the Bioinformatics community
in classification of patient samples based on gene expressions
for disease diagnosis and treatment.

Classification based on microarray data faces with many
challenges. The main challenge is the overwhelming number
of genes compared to the number of available training samples,
and many of these genes are not relevant to the distinction
of samples. These irrelevant genes have negative effect on
the accuracy of the classifier, and increase data acquisition
cost as well as learning time. Moreover, different combination

of genes may provide similar classification accuracy. Another
challenge is that DNA array data contain technical and bio-
logical noises. So, development of a reliable classifier based
on gene expression levels is getting more attention.

The main target of gene identification task is to maximize
the classification accuracy and minimize the number of se-
lected genes. For a given classifier and a training set, the
optimality of a gene identification algorithm can be ensured
by an exhaustive search over all possible gene subsets. For
a data set withn genes, there are2n gene subsets. So, it
is impractical to search whole space exhaustively, unlessn is
small. There are two approaches: filter and wrapper approaches
[10] for gene subset selection. In filter approach, the data
are preprocessed and some top rank genes are selected using
a quality metric, independently of the classifier. Though the
filter approach is computationally more efficient than wrapper
approach, it ignores the effects of selected genes on the
performance of the classifier but the selection of optimal gene
subset is always dependent on the classifier.

In wrapper approach, the gene subset selection algorithm
conducts the search for a good subset by using the classifier
itself as a part of evaluation function. The classification
algorithm is run on the training set, partitioned into internal
training and holdout sets, with different gene subsets. The
internal training set is used to estimate the parameters of a
classifier, and the holdout set is used to estimate the fitness
of a gene subset with that classifier. The gene subset with the
highest estimated fitness is chosen as the final set on which
the classifier is run. Usually in the final step, the classifier is
built using the whole training set and the final gene subset,
and then accuracy is estimated on the test set. When number
of samples in training data set is smaller, cross-validation
technique is used. Ink-fold cross-validation, the dataD
is randomly partitioned intok mutually exclusive subsets,
D1, D2, . . . , Dk of approximately equal size. The classifier is
trained and testedk times; each timei(i = 1, 2, . . . , k), it is
trained withD\Di and tested onDi. Whenk is equal to the
number of samples in the data set, it is called Leave-One-Out-
Cross-Validation (LOOCV) [9]. The cross-validation accuracy
is the overall number of correctly classified samples, divided
by the number of samples in the data. When a classifier is
stable for a given data set underk-fold cross-validation, the



variance of the estimated accuracy would be approximately
equal to a(1−a)

N [9], where a is the accuracy andN is the
number of samples in the data set. A major disadvantage of
the wrapper approach is that it requires much computation
time.

Numerous search algorithms have been used to find an
optimal gene subset. In this paper, we use one Probabilistic
Model Building Genetic Algorithm (PMBGA), which gener-
ates offspring by sampling the probability distribution calcu-
lated from the selected individuals under an assumption about
the structure of the problem, as a gene selection algorithm.
For classification, we use both Naive-Bayes classifier [4] and
the classifier proposed in [6], [21]. The experiments have
been done with three well-known data sets. The experimental
results show that our proposed algorithm is able to provide
better accuracy with selection of smaller number of informa-
tive genes as compared to both Multiobjective Evolutionary
Algorithm (MOEA) [12] and Population Based Incremental
Learning (PBIL)[3].

II. CLASSIFIERS ANDPREDICTION STRENGTH

A. Naive-Bayes Classifier

Naive-Bayes classifier uses probabilistic approach to assign
the class to a sample. That is, it computes the conditional
probabilities of different classes given the values of the genes
and predicts the class with highest conditional probability.
During calculation of conditional probability, it assumes the
conditional independence of genes.

Let C denote a class from the set ofm classes,
{c1, c2, . . . , cm}, X is a sample described by a vector ofn
genes, i.e.,X =< X1, X2, . . . , Xn >; the values of the genes
are denoted by the vectorx =< x1, x2, . . . , xn >. Naive-
Bayes classifier tries to compute the conditional probability
P (C = ci|X = x) (or in shortP (ci|x)) for all ci and predicts
the class for which this probability is the highest. Using Bayes’
rule, we get

P (ci|x) =
P (x|ci)P (ci)

P (x)
. (1)

Since NB classifier assumes the conditional independence of
genes, the equation (1) can be rewritten as

P (ci|x) =
P (x1|ci)P (x2|ci) · · ·P (xn|ci)P (ci)

P (x1, x2, . . . , xn)
. (2)

The denominator in (2) can be neglected, since for a given
sample, it is fixed and has no influence on the ranking
of classes. Thus, the final conditional probability takes the
following form:

P (ci|x) ∝ P (x1|ci)P (x2|ci) · · ·P (xn|ci)P (ci) . (3)

Taking logarithm we get,

ln P (ci|x) ∝ ln P (x1|ci) + · · ·+ ln P (xn|ci) + lnP (ci) .
(4)

For a symbolic (nominal) gene,

P (xj |ci) =
#(Xj = xj , C = ci)

#(C = ci)
(5)

where #(Xj = xj , C = ci) is the number of samples that
belong to classci and geneXj has the value ofxj , and#(C =
ci) is the number of samples that belong to classci. If a
gene value does not occur given some classes, its conditional
probability is set to 1

2N , whereN is the number of samples.
For a continuous gene, the conditional density is defined as

P (xj |ci) =
1√

2πσji

e
− (xj−µji)

2

2σ2
ji (6)

whereµji andσji are the expected value and standard devia-
tion of geneXj in classci. Taking logarithm of equation (6)
we get,

ln P (xj |ci) = −1
2

ln(2π)− ln σji − 1
2

(
xj − µji

σji

)2

(7)

Since the first term in equation (7) is constant, it can be
neglected during calculation ofln P (ci|x).

The advantage of the NB classifier is that it is simple and
can be applied to multi-class classification problems.

B. Classifier Based on Weighted Voting

Classifier based on weighted voting has been proposed in
[6], [21]. We will use the termWeighted Voting Classifier
(WVC) to mean this classifier. To determine the class of a
sample, weighted voting scheme has been used. The vote of
each gene is weighted by the correlation of that gene with
a particular class. The weight of a geneg is the correlation
metric defined as

W (g) =
µg

1 − µg
2

σg
1 + σg

2

(8)

whereµg
1, σg

1 andµg
2, σg

2 are the mean and standard deviation
of the values of geneg in class 1 and 2, respectively. The
weighted vote of a geneg for an unknown samplex is

V (g) = W (g)
(

xg − µg
1 + µg

2

2

)
(9)

wherexg is the value of geneg in that unknown sample. Then,
the class of the samplex is

class(x) = sign





∑

g∈G

V (g)



 (10)

whereG is the set of selected genes. If the computed value
is positive, the samplex belongs to class 1; negative value
meansx belongs to class 2.

This classifier is applicable to two-class classification tasks.

C. Prediction Strength

It is always preferable for a classifier to give a confidence
measure (prediction strength) of a decision about the class of
a test sample. One can define a metric for decision confidence
and determine empirically the probability that a decision of
any particular confidence value according to that metric is true.
By defining a minimum confidence level to classification, one
can decrease the number of false positive and false negatives at



the expense of increasing the number of unclassified samples.
The combination of a good confidence metric and a good
threshold value will result in a low false positive and/or low
false negative rate without a concomitant high unclassified
samples. The choice of appropriate decision confidence metric
depends on the particular classifier and how the classifier is
employed.

For Naive-Bayes classifier, the prediction strength metric for
two class problems can be defined as the relative log likelihood
difference of the winner class [8]. That is, the prediction
strength of the classifier for an unknown samplex is

ps =
ln P (cwinner|x)− ln P (closer|x)
ln P (cwinner|x) + lnP (closer|x)

. (11)

In our experiment, we have refrained from employing decision
confidence metric for Naive-Bayes classifier due to unavail-
ability of a suitable threshold value.

Golub et al. [6] and Slonim et al. [21] defined the prediction
strength for weighted voting classifier as follows:

ps =
∣∣∣∣
V+ − V−
V+ + V−

∣∣∣∣ (12)

where V+ and V− are respectively the absolute values of
sum of all positiveV (g) and negativeV (g) calculated using
equation (9).

The classification of an unknown sample is accepted if
ps > θ(θ is the prefixed prediction strength threshold), else
the sample is classified as undetermined. In our experiment,
we consider undetermined samples as misclassified samples.

III. A CCURACY ESTIMATION

We use LOOCV procedure during the gene selection phase
to estimate the accuracy of the classifier for a given gene subset
and a training set. In LOOCV, one sample from the training set
is excluded, and rest of the training samples are used to build
the classifier. Then the classifier is used to predict the class of
the left out one, and this is repeated for each sample in the
training set. The LOOCV estimate of accuracy is the overall
number of correct classifications, divided by the number of
samples in the training set. Thereafter, a classifier is built
using all the training samples, and it is used to predict the
class of all test samples one by one. Final accuracy on the
test set is the number of test samples correctly classified by
the classifier, divided by the number of test samples. Overall
accuracy is estimated by first building the classifier with all
training data and the final gene subset, and then predicting
the class of all samples (in both training and test sets) one
by one. Overall accuracy is the number of samples correctly
classified, divided by total number of samples. This kind of
accuracy estimation on test set and overall data is unbiased
because we have excluded test set during the search for the
best gene subset.

IV. GENE SELECTION METHOD

The Probabilistic Model Building Genetic Algorithm (PM-
BGA) [18] has been used as a gene selection method. PMBGA

replaces the crossover and mutation operators of traditional
evolutionary computations; instead, it uses probabilistic model
building and sampling techniques to generate offspring. It
explicitly takes into account the problem specific interactions
among the variables. In evolutionary computations, the inter-
actions are kept implicitly in mind; whereas in a PMBGA,
the interrelations are expressed explicitly through the joint
probability distribution associated with the individuals of vari-
ables, selected at each generation. The probability distribution
is calculated from a database of selected candidate solutions
of previous generation. Then, sampling this probability distri-
bution offspring are generated. The flow chart of a PMBGA
is shown in figure 1. Since a PMBGA tries to capture the
structure of the problem, it is thought to be more efficient than
the traditional genetic algorithm. The other name of PMBGA
is Estimation of Distribution Algorithm (EDA), which was
first introduced in the field of evolutionary computations by
Mühlenbein in 1996 [14].

A PMBGA has the follow components: encoding of candi-
date solutions, objective function, selection of parents, building
of a structure, generation of offspring, selection mechanism,
and algorithm parameters like population size, number of
parents to be selected, etc.

The important steps of the PMBGA are the estimation
of probability distribution, and generation of offspring by
sampling that distribution. Different kinds of algorithms have
been proposed on PMBGA. Some assume the variables in
a problem are independent of one another, some consider
bivariate dependency, and some multivariate. If the assumption
is that variables are independent, the estimation of probability
distribution as well as generation of offspring becomes easier.
A good review on PMBGA can be found in [11], [15], [16],
[17], [19]. For our experiments, we propose another one which
is described in the next subsection.

A. Proposed Method

Before the description of our proposed algorithm, let us give
some notations. LetX = {X1, X2, . . . , Xn} is the set ofn
binary variables corresponding ton genes in the data set, and
x = {x1, x2, . . . , xn} is the set of values of those variables
with xi(i = 1, . . . , n) being the value of the variableXi

[readers should not confuse thisX with that in the classifier,
the X in the classifier is a vector of values of genes while
that here is a vector of binary variables].Q is the number
of individuals selected from a population for the purpose of
reproduction.p(xi, t) is the probability of variableXi being
1 in generationt andM(xi, t) is the marginal distribution of
that variable. The joint probability distribution is defined as

p(x, t) =
n∏

i=1

p(xi, t|pai) (13)

where p(xi, t|pai) is the conditional probability ofXi in
generationt given the values of the set of parentspai. If the
variables are independent of one another, the joint probability
distribution becomes the product of the probability of each
variable p(xi, t). To select informative genes for molecular
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Replace old population according to replacement 
strategy with new offspring  

Solution 

Fig. 1. Flowchart of a PMBGA

classification, we consider that variables are independent. We
use binary encoding and probabilistic approach to generate
the value of each variable corresponding to a gene in the
data set. The initial probability of each variable is set to zero
assuming that we don’t need any gene for classification. Then,
that probability is updated by the weighted average of marginal
distribution and the probability of previous generation. That is,
the probability ofXi has been updated as

p(xi, t + 1) = αp(xi, t) + (1− α)M(xi, t)w(gi) (14)

whereα ∈ [0, 1] is called the learning rate, andw(gi) ∈ [0, 1]
is the normalized weight of genegi corresponding toXi in
the data set. This weight is the correlation of genegi with the
classes. This is calculated as follows:

w(gi) =
|W (gi)|

MAX{|W (g1)|, |W (g2)|, . . . |,W (gn)|} (15)

where eachW (gi) is calculated according to (8). The marginal
distribution ofXi is calculated as follows:

M(xi, t) =

∑Q
j=1 δi

j

Q
(16)

where δi
j ∈ {0, 1} is value of variableXi in the selected

jth individual. By samplingp(xi, t + 1), the value ofXi is
generated for the next generation. The steps of our proposed
algorithm are as follows:

1) Divide the data into training and test sets, and calculate
weight of each gene.

2) Generate initial population, evaluate it, and initialize
probability vector.

3) While termination criteria is not satisfied do the follow-
ing:

a) Select some promising individuals.
b) Calculate marginal distribution of each variable

and update probability vector according to equation
(14).

c) Generate offspring by sampling that probability
vector and evaluate them.

d) Replace old population with offspring.

Let us give an example of generating an offspring using our
method. Suppose, there are 5 genes in a data set with normal-
ized weight vectorw(g) = (0.05, 0.1, 0.01, 1.0, 0.2), probabil-
ity vector at generation t isp(x, t) = (0.1, 0.05, 0.2, 0.5, 0.3)
and the marginal probability vector calculated from the se-
lected individuals isM(x, t) = (0.5, 0.1, 0.3, 0.9, 0.5). If we
setα = 0.1, the updated probability vector using equation (14)
would be p(x, t + 1) = (0.0325, 0.014, 0.0227, 0.86, 0.12).
Now generate a vector of random numbers from uniform
distribution. Suppose the vector of random numbers isR =
(0.1, 0.2, 0.01, 0.75, 0.3). Now comparing eachp(xi, t) with
Ri, we get the offspring(0, 0, 1, 1, 0) (output is 1 ifp(xi, t) ≥
Ri) .



B. Our Proposed Method and PBIL

Population Based Incremental Learning(PBIL), proposed by
Baluja [3], was motivated by the idea of combining Genetic
Algorithm with Competitive Learning which is often used
in training of Artificial Neural Networks. Like our proposed
method, PBIL considers binary representation of individuals,
start with the initialization of the probability vector and update
it at each generation. But the probability ofXi(i = 1, . . . , n)
has been updated as

p(xi, t + 1) = αp(xi, t) + (1− α)M(xi, t) . (17)

The difference between our method and PBIL is that we
have combined the weight of each gene during update of
the probability vector. The difference between performance
of these two algorithms can be verified empirically.

C. Encoding and Fitness Calculation

In our experiments, the individuals in a population are
binary-encoded with each bit for each gene. If a bit is ‘1’, it
means that the gene is selected in the gene subset; ‘0’ means
its absence.

The fitness of an individual has been assigned as the
weighted sum of the accuracy and dimensionality of the gene
subset corresponding to that individual. It is

fitness(X) = w1 ∗ a(X) + w2 ∗ (1− d(X)/n) (18)

wherew1 andw2 are weights from[0, 1], a(X) is the accuracy
of X, d(X) the number of genes selected inX, andn is the
total number of genes. This kind of fitness calculation was
used in [13].

D. Population Diversity

In gene subset selection, different combinations of genes
may produce same classification accuracy. In this sense,
we can say that the problem is a multimodal optimization
problem. For multimodal optimization, maintaining population
diversity is very important. One technique widely used for
this purpose isSharing, first introduced by Holland [7].
The premise behind this technique is to reduce the fitness
of individuals that have highly similar members within the
population. This reward discourages redundant individuals in
a domain from reproduction.

The shared fitness of an individuali is given byfshared
i =

fi

mi
, where fi is the raw fitness of that individual, andmi

is the niche count, which defines the amount of overlap of
the individual i with the rest of the population. The niche
count is calculated by summing up a sharing function over all
members of the population:mi =

∑N
j=1 sh(dij). The distance

dij represents the distance between individuali and individual
j in the population, determined by a similarity metric. In our
experiment when two individuals have the same fitness, there
can be two possibilities: either they are same in genotype
or different. We use genotype similarity to calculate shared
fitness, and define

sh(dij) =
{

1 if individuals i and j have same genotype;
0 otherwise.

(19)

We select some top ranks individuals (the number is
fixed during experiment) that have higher shared fitness for
calculation of marginal probability distribution. During the
regeneration steps, we combine old population and offspring to
generate new population. We take the best individuals from the
combined population. During selection of individual, if both
individuals have same shared fitness but different genotype,
we take that one which has higher average gene weight of the
selected genes.

V. RELATED WORKS IN MOLECULAR CLASSIFICATION

USING EVOLUTIONARY ALGORITHMS

Previously, Non-dominated Sorting Genetic Algorithm-
II (NSGA-II) [5], Multi-objective Evolutionary
Algorithm(MOEA) [12] and Parallel Genetic Algorithm
[13] with weighted voting classifier have been used for
the selection of informative genes responsible for the
classification of the DNA microarray data.

In the optimization using NSGA-II, three objectives have
been identified. One objective is to minimize the size of gene
subset; the other two are the minimization of mismatches in
the training and test samples, respectively. The number of
mismatches in the training set is calculated using LOOCV
procedure, and that in the test set is calculated by first building
a classifier with the training data and the gene subset and then
predicting the class of the test samples using that classifier.
Due to inclusion of the third objective, the test set is, in
reality, has been used as a part of training process and is not
independent. Thus the reported 100% classification accuracy
for the three cancer data sets is not generalized accuracy, rather
a biased accuracy on available data. In supervised learning, the
final classifier should be evaluated on an independent test set
that has not been used in any way in training or in model
selection [10], [20].

In the work using MOEA, also three objectives have been
used; the first and the second objectives are the same as above,
the third object is the difference in error rate among classes,
and it has been used to avoid bias due to unbalanced test
patterns in different classes. For decision making, these three
objectives have been aggregated. The final accuracy presented
is the accuracy on the training set (probably on the whole data)
using LOOCV procedure. It is not clear how the available
samples are partitioned into training and test sets, and why no
accuracy on the test set has been reported.

In the gene subset selection using parallel genetic algorithm,
the first two objectives are used and combined into a single
one by weighted sum, and the accuracy on the training and
test sets (if available) have been reported. In our work, we
follow this kind of fitness calculation.

VI. EXPERIMENTS

A. Data Sets

We evaluate our method on three cancer data sets:
Leukemia, Lymphoma and Colon. The data sets are de-
scribed in table I. The first and the second data sets



TABLE I

DATA SETS USED IN THE EXPERIMENTS

Data Set Total Genes Classes Total Samples

Leukemia 7129 ALL 47

AML 25

Lymphoma 4026 DLBCL 42

Others 54

Colon 2000 Normal 22

Cancer 40

need some preprocessing; we have downloaded the pre-
processed data (Leukemia and Lymphoma data sets) from
http://www.iitk.ac.in/kangal/bioinformatics.

a) Leukemia Data Set:This is a collection of gene
expressions of 7129 genes of 72 leukemia samples reported
by Golub et al. [6]. The data set is divided into an ini-
tial training set of 27 samples of Acute Lymphoblastic
Leukemia (ALL) and 11 samples of Acute Myeloblastic
Leukemia (AML), and an independent test set of 20 ALL
and 14 AML samples. The data sets can be downloaded from
http://www.genome.wi.mit.edu/MPR. These data sets contain
many negative values which are meaningless for gene expres-
sions, and need to be preprocessed. The negative values have
been replaced by setting the threshold and maximum value
of gene expression to 20 and 16000, respectively. Then genes
that havemax(g)−min(g) > 500 andmax(g)/min(g) > 5
are excluded, leaving a total of 3859 genes. This type of
preprocessing has been used in [5]. Then the data have been
normalized after taking logarithm of the values.

b) Lymphoma Data Set:The Diffused Large B-Cell
Lymphoma (DLBCL) data set [1] contains gene expression
measurements of 96 normal and malignant lymphocyte sam-
ples, each measured using a specialized cDNA microarray,
containing 4026 genes that are either preferentially expressed
in lymphoid cells or of known immunological or oncological
importance. The expression data in raw format are available
at http://llmpp.nih.gov/lymphoma/data/figure1/figure1.cdt. It
contains 42 samples of DLBCL and 54 samples of other types.
There are some missing gene expression values which have
been replaced by applying k-nearest neighbor algorithm in [5].
Then the expression values have been normalized, and the data
set is randomly divided into mutually exclusive training and
test sets of equal size.

c) Colon Data Set: This data set, a collection of
expression values of 62 colon biopsy samples measured
using high density oligonucleotide microarrays containing
2000 genes, is reported by Alon et al. [2]. It contains
22 normal and 40 colon cancer samples. It is available at
http://microarray.princeton.edu/oncology. These gene expres-
sion values have been log transformed, and then normalized.
We divide the data randomly into mutually exclusive training
and test sets of equal size.

B. Experimental Setup

We generate initial population with each individual having
10 to 60 random bit positions set to ‘1’. This has been
done to reduce the run time. For calculation of marginal
distribution, we select best half of the population (truncation
selection, τ = 0.5). The setting of other parameters are:
Population Size=500, Maximum Generation=50, Offspring
Size=450,α=0.1,w1=0.75 andw2=0.25. We use both Naive-
Bayes and weighted voting classifiers separately to predict the
class of a sample. The algorithm terminates when there is no
improvement of the fitness value of the best individual in 5
consecutive generations or maximum number of generations
has passed.

C. Experimental Results

Here we present the experimental results of our algorithm
and PBIL on the three data sets. All the results are the average
of 50 independent runs. For PBIL, we setα = 0.9 instead
of 0.1. We tried PBIL withα = 0.1 but it returned neither
minimum size of gene subset nor encouraging accuracy in
reasonable time. With the new value PBIL produced satisfac-
tory results. For comparison, we also provide the experimental
results of MOEA by Liu and Iba [12]. Though it is stated
in the paper that the accuracy presented is on training set,
it is actually the accuracy of all data (since all data have
been used as training set) with prediction strength threshold
0. In the presented results, each value of the formx ± y
indicates the average valuex with the standard deviationy.
The experimental results are shown in tables II–VI. The values
inside parentheses are the experimental results of PBIL.

TABLE II

AVERAGE ACCURACY RETURNED BY OUR ALGORITHM USING WEIGHTED

VOTING CLASSIFIER WITH PREDICTION STRENGTH THRESHOLD0. THE

RESULTS OFPBIL ARE SHOWN IN PARENTHESES

Data Set Training Set Test Set Overall

Leukemia 1.0± 0.0 0.90± 0.06 0.96± 0.03

(1.0± 0.0) (0.86± 0.06) (0.93± 0.03)

Lymphoma 0.99± 0.01 0.93± 0.04 0.96± 0.02

(0.98± 0.02) (0.91± 0.05) (0.94± 0.03)

Colon 0.95± 0.03 0.81± 0.08 0.88± 0.04

(0.91± 0.04) (0.77± 0.01) (0.84± 0.05)

From the experimental results, we see that our algorithm
outperforms both PBIL and MOEA in both respects of ex-
perimental results: number of genes selected and the accuracy
returned. Although all the methods may produce almost the
same results on training data, they return different accuracies
on test and overall data.

In the case of Leukemia and Lymphoma data sets, both
our method and PBIL produce almost 100% accuracy on
training data using Naive-Bayes classifier and weighted voting
classifier with prediction strength threshold=0, and in the case
of Colon data, our algorithm finds 95% accuracy while PBIL
returns 91% accuracy. Big differences among two methods and



TABLE III

AVERAGE ACCURACY RETURNED BY OUR ALGORITHM USING WEIGHTED

VOTING CLASSIFIER WITH PREDICTION STRENGTH THRESHOLD0.30. THE

RESULTS OFPBIL ARE SHOWN IN PARENTHESES

Data Set Training Set Test Set Overall

Leukemia 0.99± 0.01 0.87± 0.06 0.94± 0.03

(0.95± 0.02) (0.80± 0.08) (0.88± 0.04)

Lymphoma 0.97± 0.02 0.91± 0.05 0.94± 0.02

(0.95± 0.03) (0.88± 0.05) (0.91± 0.03)

Colon 0.90± 0.04 0.74± 0.07 0.83± 0.04

(0.83± 0.05) (0.70± 0.09) (0.77± 0.05)

TABLE IV

AVERAGE ACCURACY RETURNED BY OUR ALGORITHM USING

NAIVE -BAYES CLASSIFIER. THE RESULTS OFPBIL ARE SHOWN IN

PARENTHESES

Data Set Training Set Test Set Overall

Leukemia 1.0± 0.0 0.90± 0.09 0.95± 0.05

(0.99± 0.01) (0.80± 0.11) (0.90± 0.06)

Lymphoma 0.99± 0.01 0.91± 0.04 0.95± 0.02

(0.99± 0.01) (0.90± 0.06) (0.94± 0.03)

Colon 0.95± 0.03 0.78± 0.08 0.87± 0.04

(0.91± 0.04) (0.73± 0.09) (0.83± 0.05)

two classifiers can be observed on test data. PBIL produces
better accuracy on test set using weighted voting classifier
(PS=0) than those using Naive-Bayes classifier. The same is
also true for our method. Both algorithms return lower accu-
racy using weighted voting classifier with prediction strength
threshold 0.30, but the average number of genes selected is
smaller (except in the case of Leukemia by our method) than
those under zero confidence level. Under all conditions, both
algorithms perform badly on Colon data. According to our
knowledge, there have been reported no algorithms and no
classifiers that return 100% accuracy on this data set. Finally, it
is evident from the experimental results that our algorithm with
either classifier provides better accuracy and identifies smaller
number of informative genes than those by other methods for
classification. Moreover, all our reported results are unbiased.

VII. D ISCUSSION

Selection of the most useful genes for classification of
available samples into two or more classes is a multi-objective
optimization problem. There are many challenges for this
classification task. Unlike other functional optimizations which
use the values of the functions as fitness, this problem needs
something beyond these values. It may be the case that you get
100% accuracy on training data but 0% accuracy on test data.
So, the selection of proper training and test sets, and design of
a reliable search method are very important. This problem has
been solved in the past using both supervised and unsupervised
methods. In this paper, we propose a new PMBGA for the
selection of the gene subsets. Our method outperforms other
algorithms by selecting the most useful gene subset for better

TABLE V

THE AVERAGE NUMBER OF GENES SELECTED BY OUR ALGORITHM USING

WEIGHTED VOTING AND NAIVE -BAYES CLASSIFIERS. THE RESULTS OF

PBIL ARE SHOWN IN PARENTHESES. WVC=WEIGHTED VOTING

CLASSIFIER, PS=PREDICTION STRENGTH THRESHOLD

Data Set WVC (PS=0) WVC (PS=0.30) NB Classifier

Leukemia 3.16± 1.0 3.78± 1.75 2.92± 1.0

(10.8± 7.14) (6.92± 3.94) (10.2± 7.99)

Lymphoma 4.42± 2.46 2.42± 0.91 5.77± 4.10

(7.76± 3.23) (4.82± 2.85) (14.2± 13.16)

Colon 4.44± 1.74 3.24± 1.34 5.14± 2.04

(5.9± 2.98) (3.44± 2.14) (5.9± 3.62)

TABLE VI

THE OVERALL AVERAGE ACCURACY RETURNED AND NUMBER OF GENES

SELECTED BYMOEA

Data Set Overall Accuracy Number of Genes Selected

Leukemia 0.90± 0.07 15.20± 4.54

Lymphoma 0.90± 0.03 12.90± 4.40

Colon 0.80± 0.08 11.4± 4.27

classification.

In microarray data, overfitting (and sometimes underfitting)
is a major problem because the number of training samples
given is very small compared to the number of genes. To
avoid it, many researchers use all the data available to guide
the search and report the accuracies that were used during
the gene selection phase as the final accuracies. This kind
of estimation is biased towards the available data, and may
predict poorly when used to classify unseen samples. But
our accuracy estimation is unbiased because we have isolated
the test data from training data during gene selection phase.
Whenever a training set is given, we have used that one only
for the selection of genes, and the accuracy on the independent
test set is presented using the final gene subset; whenever the
data is not divided, we randomly partition it into two exclusive
sets: training and test sets, and provide accuracy as described
before.

Our algorithm finds smaller numbers of genes but results
in more accurate classification. This is consistent with the
hypothesis that for a smaller training set, it may be better
to select a smaller number of genes to reduce the algorithm’s
variance; and when more training samples are available, more
genes should be chosen to reduce the algorithm’s bias [10].

During our experiments, we have used two classifiers sep-
arately to show that our algorithm is not biased towards a
specific classifier. Naive-Bayes classifier is applicable to multi-
class classification whereas the weighted voting classifier for
two-class problem. To get more confident results, we have
used prediction strength threshold of 30% with the weighted
voting classifier.



VIII. S UMMARY AND FUTURE WORK

In this paper, the selection of the most useful subset of genes
for cancer class prediction in three well-known microarray data
sets has been done by a new Probabilistic Model Building
Genetic Algorithm (PMBGA) using either Naive-Bayes or
weighted voting classifier. This new algorithm is a variant of
PBIL. During the estimation of probability of each variable,
we have emphasized on the fact that weight of a gene should
play role in the selection of that gene, and this has been
justified by the empirical results. The two objectives of the task
have been combined into a single one by the weighted sum of
the accuracy and the dimensionality of the gene subset. Since
the number of available training samples compared to number
of genes is very smaller, we have used the wrapper approach
Leave-One-Out-Cross-Validation to calculate the accuracy of
a gene subset on training data. The classification accuracy is
notably improved and the number of genes selected is reduced
with respect to both PBIL and MOEA.

However, there remain many unresolved issues that we
we want to address in future. For example, DNA microarray
data may contain noise, and dealing with noisy data is very
important in Bioinformatics. In our future works, we want
to work with these noisy data. Naive-Bayes classifier can
be used for multiclass classification problems. We want to
perform experiment using this classifier on multiclass data
sets with a reasonable confidence level which we have not
considered here. During our experiments, we found that some
runs were not selecting some gene subsets with a few more
genes although they would provide better test accuracy. We
will pay attention to this in our future work.
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