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Abstract. This paper discusses the performance of a hybrid system
which consists of EDP and GP. EDP, Estimation of Distribution Pro-
gramming, is the program evolution method based on the probabilistic
model, where the probability distribution of a program is estimated by
using a Bayesian network, and a population evolves repeating estimation
of distribution and program generation without crossover and mutation.
Applying the hybrid system of EDP and GP to various problems, we dis-
covered some important tendencies in the behavior of this hybrid system.
The hybrid system was not only superior to pure GP in a search per-
formance but also had interesting features in program evolution. More
tests revealed how and when EDP and GP compensate for each other.
We show some experimental results of program evolution by the hybrid
system and discuss the characteristics of both EDP and GP.

1 Introduction

1.1 Program Evolution using Probability Distribution

Recently, attention has been focused on evolutionary algorithms based on a prob-
abilistic model. These are called Estimation of Distribution Algorithms (EDA)
[Larranage and Lozano02] or Probabilistic Model Building Genetic Algorithms.
EDA is a search method that eliminates crossover and mutation from the Genetic
Algorithm (GA) and places more emphasis on the relationship between gene loci.
Much research has been performed on this. However, there have been almost no
researches on its application to program evolution problems (see Section 4.3).

We have proposed EDP, Estimation of Distribution Programming, based on a
probability distribution expression using a Bayesian network [Yanai03a] . EDP
is a population based search method and evolves a population by repeating
estimation of distribution and program generation. In program evolution ex-
periments, EDP showed different characteristics from GP and could solve GP’s
weak problems. On the other hand, in GP standard problems, for example, a
function regression problem or a boolean problem, GP was far superior to EDP.
Therefore, we built the hybrid system of GP and EDP and tried to test it in a
function regression problem. If the performance of this hybrid system is worse
than pure GP, we can conclude that EDP is useless in this GP standard problem.
However, contrary to our expectation, experimental results indicated interesting
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tendencies. Although pure GP was superior in younger generations, the perfor-
mance of the hybrid system overtook GP on the evolution and was better in
later generations.

We were interested in the robustness of this hybrid system’s make-up and
what causes the ”overtaking.” This paper discusses the performance and the
characteristics of the hybrid system according to various experiments and con-
siders GP’s and EDP’s defects and how GP and EDP compensate for each other.

This paper is organized as follows: Section 2 describes the algorithm of the
hybrid system and the details of estimation of distribution and program gen-
eration. Section 3 indicates the performance difference due to the hybrid ratio
of GP to EDP and discusses whether the ”overtaking” is significant. In Section
4, we show experiments of 2 systems: a system which changes the hybrid ratio
for each generation and a system which estimates distribution independent of
a past state, and thoroughly analyze the systems. On the basis of these three
experiments, an important conclusion about EDP’s function is reached. Section
5 summarizes this paper and considers future work.

1.2 Features of EDP

From comparative experiments with GP in a max problem [Langdon02] and a
boolean 6-multiplexer problem, the following characteristics of EDP are obtained
[Yanai03b].

1. In a max problem, EDP is superior to GP.
2. When adding a harmful node, which is the source of introns in a max prob-

lem, EDP is far superior to GP.
3. In a boolean 6-multiplexer problem, EDP cannot search as well as GP.
4. In both, a max problem and a boolean 6-multiplexer problem, EDP can find

a better solution than a random search.
5. It is expected that EDP can control introns effectively because it keeps the

occurrence probability of harmful nodes low.
6. EDP has positional restriction and useful part trees cannot shift their po-

sition, while GP’s crossover can move part trees to another position in the
tree.

The 6th point is EDP’s critical defect and makes its performance low in a
boolean 6-multiplexer problem. A radical improvement is under consideration in
order to eliminate this defect. The hybrid system introduced in the next Section,
which is an easy extension, can overcome this difficulty. In brief, it leaves the
shifting of part trees to GP’s crossover.

2 Hybrid System of EDP and GP

2.1 Algorithm of Hybrid System

In this Section, we explain our hybrid system which consists of EDP and GP.
This hybrid system carries out a search using the following procedure:
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Step 1 Initialize a population.
Step 2 Evaluate individuals and assign fitness values.
Step 3 If a termination criterion is satisfied, then go to Step 9.
Step 4 Estimate the probability distribution.
Step 5 Use the elitist strategy.
Step 6 Generate new rM − ES individuals with GP operator.
Step 7 Generate new (1 − r)M individuals with EDP operator.
Step 8 Replace the population and go to Step 2.
Step 9 Report the best individual.

In Step 1, according to function node generation probability PF and terminal
node generation probability PT (= 1 − PF ), initial M individuals are generated
randomly, where M is the population size. However, if tree size limitation is
reached, terminal nodes are generated. For example, the probabilities of function
node ”+” and terminal node ”x” are given:

if tree size limitation is not reached, (1){
P (X = ” + ”) = PF × 1

NF

P (X = ”x”) = PT × 1
NT

(2)

if tree size limitation is reached, (3){
P (X = ” + ”) = 0
P (X = ”x”) = 1

NT

(4)

where NF is the number of function nodes and NT is the number of terminal
nodes.

Next, each individual in the current population is evaluated by a fitness
function and assigned its fitness value (Step 2). If a termination criterion is
met, then go to Step 9. Usually a termination criterion is a previously specified
maximum number of generations (Step 3).

In Step 4, superior individuals with high fitness values are selected within
sampling size SS , and a new distribution is estimated based on those selected
individuals (see Section 2.3). We use the elitist strategy in Step 5, i.e., elite ES

individuals are selected from the population in the order of fitness superiority
and copied to the new population, where ES is the elite size.

In Step 6, nearly 100r% (0 ≤ r ≤ 1) of the population, precisely rM − ES

individuals, is generated by standard GP operators: crossover and mutation.
It selects superior individuals of GP operator’s target by tournament selection
with tournament size Tgp and performs mutation with the mutation probability
PM or crossover with the probability 1−PM . Note that mutation and crossover
which violate tree size limitation are not performed, and generated individuals
are under tree size limitation.

Then in Step 7, the remaining 100(1−r)% of the population, that is (1−r)M
individuals, is generated by using a newly acquired distribution (see Section
2.4). This new distribution is considered better than the previous one because
it samples superior individuals in the population.
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Fig. 2. Efficient network topology.

This process is repeated until a termination criterion is met. Finally in Step
9, the best individual is reported as the solution to the problem.

r is the most important parameter, it decides the system behavior and the
ratio of GP to EDP in an individual generation, called the hybrid ratio. Through
the combination of EDP and GP, the difficulty indicated in Section 1.2 might
be overcome. However, it is not obvious whether GP gains anything from hy-
bridization. In Section 3, we test the system performance in a function regression
problem changing the hybrid ratio r from 0 to 1.

2.2 Distribution Model

We use a Bayesian network as the distribution model of programs. Values of
probabilistic variables are symbols for each node in the program tree. Assign
the index numbers to each node of evolving programs as in Fig. 1, the range of
probabilistic variable Xi is the symbols of node i, that is, Xi ∈ T ∪ F , where F
is the function node set, T is the terminal node set.

For instance, assume F = {+,−, ∗, /} and T = {x1, x2},

P (X5 = ” + ”|X2 = ”/”) =
2
7

(5)

means that the conditional probability that node 5 becomes ” + ” is 2
7 if node 2

is ”/”. Ci is the set of probabilistic variables which Xi is dependent on. In the
former example, C5 = {X2}.

Although there are several efficient topologies of a Bayesian network as indi-
cated in Fig. 2, the simplest one, that is, #1 in Fig. 2, is used for our experiments.
The topology of a Bayesian network is tree-like and it is the same as the pro-
gram’s topology.

2.3 Estimation of Distribution

The probability distribution is updated incrementally [Baluja94] as follows:

Pt+1(Xi = x|Ci = c) = (1 − η)P̂ (Xi = x|Ci = c) + ηPt(Xi = x|Ci = c) (6)
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where Pt(Xi = x|Ci = c) is the distribution of the tth generation and P̂ (Xi =
x|Ci = c) is the distribution estimated based on superior individuals in the
(t + 1)th population, η is the learning rate which means dependence degree on
the previous generation.

P̂ (Xi = x|Ci = c) is estimated as follows. At first, SS individuals are sampled
by tournament selection with tournament size Tedp, and maximum likelihood
estimation is performed based on these selected individuals. Therefore,

P̂ (Xi = x|Ci = c) =

∑SS

j=1 δ(j,Xi = x,Ci = c)∑SS

j=1

∑
x∈F∪T δ(j,Xi = x,Ci = c)

, (7)

where

δ(j,Xi = x,Ci = c) =




1 if Xi = x and Ci = c

at the individual j

0 else
. (8)

2.4 Program Generation

At first, the acquired distribution Pt(Xi = x|Ci = c) is modified like Laplace
correction [Cestnik90] by

P ′
t (Xi = x|Ci = c) = (1 − α)Pt(Xi = x|Ci = c) + αPbias(Xi = x|Ci = c), (9)

where α is a constant that expresses the Laplace correction rate, Pbias(Xi =
x|Ci = c) is the probability to bias distribution. This modification makes all
occurrence probabilities of node symbols positive. Next, according to P ′

t (Xi =
x|Ci = c), node symbols are decided in sequence from root to terminals.

2.5 Parameter Control

Table 1 indicates the parameters used for experiments.

3 Performance Difference due to the Hybrid Ratio

3.1 Function Regression Problem

Consider a function regression problem. progi is a function expressed by a pro-
gram tree and fobj is the function to be approximated. The fitness value is given
with the following formula:

fitness = 1000 − 50
30∑

j=1

|prog(Xj) − fobj(Xj)|, (10)

where

Xj = 0.2(j − 1). (11)
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Table 1. Parameters for a function regression problem.

Common parameters for EDP and GP
M : population size 1000
ES : elite size 5
F : function node set {+,−, ∗, /, cos, sin}
T : terminal node set {x, 0.05, 0.10, 0.15, · · · , 1.00}
NF : the number of function nodes 6
NT : the number of terminal nodes 21
PF : generation probability of function node 0.8
PT : generation probability of terminal node 0.2
Tree size limitation in initializing population max depth = 6

EDP parameters
α: Laplace correction rate 0.3
Pbias(Xi = x|Ci = c): the probability to bias distribution 1

NF +NT
η: learning rate 0.2
SS : sampling size 200
Tedp: tournament size for sampling 20
Tree size limitation max depth = 6

GP parameters
PM : mutation probability 0.1
Tgp: tournament size for GP operator 5
Tree size limitation max depth = 6
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Fig. 3. Objective functions.

Objective functions are

A : fobj(x) = (2 − 0.3x) sin(2x) cos(3x) + 0.01x2 (12)

B : fobj(x) = x cos(x) sin(x)(sin2(x) cos(x) − 1) (13)

C : fobj(x) = x3 cos(x) sin(x)e−x(sin2(x) cos(x) − 1) (14)

which are plotted in Fig. 3. Objective function C is cited from [Salustowicz97].
Although B is obtained from simplification of C, B is more difficult to search (see
fitness values in Fig. 5 and 6). A is our original function and the most difficult
of the three objective functions.

Fig. 4, 5, and 6 show the mean of max fitness values for 100 runs, that is,

f̄maxm =
1

100

100∑
k=1

fmaxk,m (15)

where fmaxk,m is the maximum fitness value in a population of the mth generation
at the kth run. Note that f̄

maxm is not a mean fitness value of a population,
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Fig. 4. Results for objective function A.
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Fig. 5. Results for objective function B.
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but a mean value of the maximum fitness value fmaxk,m. The solution in an
evolutionary computing is given by an individual who has the maximum fitness
value in a population. Therefore, system performances should be compared in
maximum fitness values.

Fig. 7 shows the frequency of runs in which the maximum fitness value at
the 500th generation is over x, that is,

F (x) =
100∑
k=1

δ(x ≤ f
maxk,500) (16)

where

δ(x ≤ a) =

{
1 : x ≤ a

0 : x > a
. (17)

Fig. 4, 5, 6, and 7 indicate the similar tendency in each case. Although the
r = 1.0 system which is pure GP, demonstrated the best performance in younger
generations, gradually hybrid systems overtook pure GP one after another. The
”overtaking” was conspicuous when r = 0.3 or r = 0.4. At the 500th generation,
the performance of the r = 0.5 system was the best in all cases. The system
performances at the 500th generation reached a peak at r = 0.5, and got worse
as the hybrid ratio was biased.

Mean cannot give adequate information for system performances, hence we
showed Fig. 7. Fig. 7 demonstrates that the hybrid system is also superior to
pure GP in the success rate of a search. For instance, in the case of A, the
probabilities that the maximum fitness value at the 500th generation is over 700
are 63

100 with r = 0.5 and 30
100 with pure GP respectively.

3.2 Analysis of the results

The system performances are estimated by f̄maxm. However, in order to conclude
that the differences of these values are statistically significant and reliable, not
only mean but also standard deviation and sample size (= 100) should be taken
into consideration. We used Welch’s test for the obtained experimental results.
By means of Welch’s test, it can be judged whether 2 data sets are samples
from the same statistical population or not. As a result of Welch’s test with
10% significance level, the differences between the r = 0.5 system and pure GP
at the 500th generation were significant in all cases. Statistically speaking, the
null hypothesis that data in the r = 0.5 system and in pure GP were sampled
from the same statistical population was rejected (the probability that the null
hypothesis is correct is less than 10%). In the case of objective function C,
although the difference in values was slight, standard deviation was negligible
(see Fig. 7); Welch’s test concluded that the differences were significant.

In the r = 0.5 hybrid system, the updating times of the maximum fitness
values at each generation of the EDP operator and the GP operator are counted
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respectively. Surprisingly, the EDP operator hardly contributes to construction
of the best individual directly, and only the GP operator does.

The summary of results is as follows:

1. The success probability of the hybrid system in a search is higher.
2. Statistical testing proved that the r = 0.5 system was superior to pure GP

(r = 1.0) at the 500th generation.
3. In any case, the same tendencies, the ”overtaking”, pure GP’s superiority in

younger generations and so on, were found.
4. Pure EDP was worse.
5. The obtained graphs were consistent and well formed.
6. The EDP operator could not produce better individuals, but played some

invisible roles.

We consider these features of the hybrid system to be universal. In other words,
the parameter r characterizes the system behavior and the performance. Besides,
hybridization helps GP and EDP compensate for their defects, and build a better
evolutionary system.

Here are some follow-up questions:

1. Why is the hybrid system superior to pure GP? What are EDP’s roles?
2. Is the low performance in younger generations important?
3. How should r be controlled? What method is the best?

The next section will answer some of these.

4 Discussion

4.1 Change of Hybrid Ratio at each generation

This section investigates the hybrid system’s performance, changing the hybrid
ratio r at each generation. In Fig. 4, until the 50th generation, the higher the
GP ratio of the system is, the better its performance is. Therefore, the system
that has a high GP ratio in younger generations and decreases the ratio later is
expected to have higher performance.

Comparative experiments were carried out in 8 systems, shown in Fig. 8.
Objective function is A given in the formula (12). In system D, the GP ratio is
linearly increased from 0, at the 0th generation, to 1.0, at the 500th generation.
On the other hand, the system E decreases the ratio linearly. System G switches
the ratio from 1.0 to 0.3 at the 205th generation because the r = 0.3 system
overtook pure GP at the 205th generation, as shown in Fig. 4. System H was
prepared in the same manner as G. Therefore, H and G are the top favorites in
these systems.

Fig. 9 and 10 show the results of comparative experiments. Surprisingly,
system A overtook G (B also overtook H). As a result of Welch’s test with
10% significance level, the differences were significant. This result means that
population states of A and G are far different in spite of close performance at the
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Fig. 8. Systems with changing r, where
i is the generation number.
System r

A: classical hybrid r = 0.3
B: classical hybrid r = 0.5
C: pure GP r = 1.0

D: linear increasing r =
i
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F: random r is a random value

from 0 to 1 and differ-
ent for each generation.
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Fig. 9. Mean of max fitness
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Fig. 10. Mean of max fitness values at each generation.

205th generation. In other words, EDP’s behavior before the 205th generation
likely has a good influence later.

Another interesting result is that system D was superior to all other systems,
especially E. As a result of Welch’s test with 10% significance level, the differ-
ences were significant. Although it was expected that D would be worse than
E, judging from Fig. 4, the result was quite the opposite. This point is evidence
that EDP functions well in early generations.

How does the hybrid system transmit EDP’s work in an early stage of evo-
lution to posterity?

1. The probability distribution (Bayesian network) learned incrementally mem-
orizes the past population state.

2. With EDP, the diversity of the population is maintained at each generation
and useful part structures can survive.

3. There is diversity inside individuals. Individuals constructed by EDP have
more multifarious part structures. These various structures are put together
in later generations of evolution.

The next section considers these possibilities.
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Fig. 11. System of η = 0

4.2 System of η = 0

In order to test the hypothesis that the probability distribution memorizes the
past EDP’s work, the system of η = 0 was simulated. This system estimates
distribution without referring to the past distribution (see Section 2.3). Objective
function A was used.

As indicated in Fig. 11, the characteristic of the hybrid system was kept. The
”overtaking” still took place and the r = 0.5 system was the best. Therefore,
the past information accumulated in the probability distribution does not cause
the high performance of the hybrid system.

The result shown in Fig. 9 suggests the third possibility mentioned in Section
4.1. This is because system D, which has the best performance of all, cannot
benefit from EDP in later generations. However, in order to obtain more reliable
evidence, we are currently working on testing the second possibility.

4.3 Related Work

Probabilistic Incremental Program Evolution (PIPE) [Salustowicz97] was used
to perform a program search based on a probabilistic model. However, PIPE
assumes the independence of program nodes and differs from our approach us-
ing a Bayesian network in this assumption. The merits of having probabilistic
dependency relationship are as follows:

1. Because an occurrence probability of a node symbol is dependent on its
parent node, estimation and generation are serial from a parent node to a
child. Therefore, it can derive and generate building blocks.

2. The past dominant structure can survive after switching the probability
distribution based on a parent node symbol.

On the other hand, optimization using a Bayesian network is much re-
searched. [Larranaga et al.00a] [Larranaga et al.00b]. However, their application
is limited to fixed length array search problems.
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5 Conclusion

In this paper, we proposed a hybrid system of EDP and GP, and demonstrated
that the hybrid system was superior to both pure GP and pure EDP. The ex-
perimental results indicated that EDP worked effectively in early generations
and contributed to later high performance. It turned out that pure GP could
not generate enough various part trees in early generations to build excellent
individuals. On the other hand, EDP cannot shift useful part trees to another
position in the tree. Hybridization helps EDP and GP compensate for each other.

However, it is not clear how EDP works in the hybrid system. In future work,
the detail of EDP’s function in early generations will be researched. We are also
interested in the greatest control of the hybrid ratio r and the robustness of the
behavior that the hybrid system exposed in our experiments.
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