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Abstract— The cooperation of several robots are needed for
complex tasks. The cooperation methods for multiple robots
generally require exact goal or sub-goal positions. However, it
is difficult to direct the goal or sub-goal positions to multiple
robots for the sake of cooperation with each other.

Planning algorithms will reduce the burden for this purpose.
In this paper, we propose a multi-agent planning algorithm based
on a random sampling method. This method doesn’t require
the exact sub-goal positions nor the times at which cooperation
occurs. The effectiveness of this approach is empirically shown
by simulation results.

Index Terms— RRT, path planning, cooperation, multi-agent.

I. INTRODUCTION

The cooperation of robots enables them to carry out
complex tasks, such as transferring objects [1], efficiently.
Hence, techniques in which multiple robots cooperate to
perform tasks will be increasingly important in the future.
In the direct robot operation, many instructions are needed to
transfer the operator’s intention to the robot which performs
the target task. An appropriate use of planning algorithms
can reduce the amount of these instructions. In addition, it
realizes autonomous cooperation of robots.

In recent years, a technique called Rapidly-exploring Ran-
dom Trees (RRT) has emerged as an algorithm useful for
planning [2]. When the planning involves cooperative be-
havior among multiple robots, however, there are problems
with the original RRT algorithm. In this paper, we propose
a revised algorithm for planning the cooperative behavior
among multiple robots. The target problem is transferring an
object with the cooperation of robots.

This paper is structured as follows: following section
describes the planning and the RRT technique. Section III
explains the problem being targeted, and section IV outlines
the proposed technique. Section V describes the experimental
results of simulation to verify the proposed technique, sec-
tion VI presents discussions about the results, followed by a
conclusion in section VII.

II. PLANNING

Over the past few decades, RRT has been used in plan-
ning [2], [3]. This is a technique that allows planning to
be carried out without pre-processing. This enables high-
speed algorithms, and a large volume of research has been

conducted in this area in recent years. The RRT algorithm
will be explained in the next subsection.

RRT is used in the motion planning [4], [5] and path
planning [6], [7] of the robot. Kuffner et al. used RRT to
perform motion planning (grasping objects, lifting one leg,
etc.) in a humanoid robot [4]. If the initial state, final state,
environment model, and the robot model are provided, it can
plan a series of states from the initial state to the final state
without bumping into any surrounding objects. Okada et al.
used the RRT for planning the path of a humanoid robot
which avoided obstacles using stereo vision [7].

At present, there has been some research on using multiple
robots in cooperation to carry items (for example, as described
in [1]). However, in these research studies, heuristic planning
algorithms were used or the goal position was provided
in advance. Using our proposed method (section IV), we
succeeded in generating sub-goals for the cooperation task
automatically from small amounts of information.

If the task is more complicated, an operator will be forced
to send more instructions to the robot in order for the
task to be achieved. Within a similar framework, performing
cooperative tasks increases the instructions required to operate
the multiple robots because the number of robots increases.
In order to put this into practice, ensuring the instructions
provided to the robots are simple will be of benefit to the
operator. Our proposed technique is useful in this regard as
well.

A. Rapidly-exploring Random Trees (RRT)

RRT is a technique in which random sampling is used to
grow search trees within a state space [2], [3]. Planning is
based on these search trees.

1) Algorithm: The RRT algorithm builds a search tree
τ that has the initial state xinit as its root, based on the
following procedure [2]. First, a random state (xrand) is
chosen from the state spaces to be searched. Next, branches
are extended from the search tree τ towards xrand. This is
either repeated a given number of times, or is repeated until
the search tree arrives at the final state.

Because RRT offers almost no hypotheses in terms of the
problem, we can easily applied it to various problems.

2) Extended techniques: Kuffner et al. have proposed the
RRT-Connect [3], a technique for achieving bidirectional



RRT CON CON(xinit, xgoal)
for k = 1 to K do

xrand ← RANDOM STATE();
if not (CONNECT(τa, xrand) = Trapped) then

if (CONNECT(τb, xnew) = Reached) then
return Path(τa, τb);

SWAP(τa, τb);
return Failure

Fig. 1. RRT-ConCon: an algorithm that carries out bidirectional searches
with RRT.

growth of the search tree from both the initial state and
the final state. Bidirectional searching is a technique that is
often also used in typical search algorithms, and is extremely
effective in improving the searching efficiency. Additionally,
they have proposed a CONNECT operation in which the
EXTEND operation is repeated only as long as the search
tree is growing.

According to LaValle et al. [2], the CONNECT operation
demonstrates the best search performance with holonomic
constraints, and the EXTEND operation demonstrates the best
search performance with non-holonomic constraints. When a
bidirectional search is carried out, these operations can be
combined, but of these, the best performance with holonomic
constraints is demonstrated by the RRT-ConCon algorithm
(Fig. 1) [2].

The planning algorithm proposed in section IV was imple-
mented in the MSL (Motion Strategy Library) [8].

III. THE TARGETED PROBLEM

The problem targeted in our research is the task of having
humanoid robots cooperate in carrying a load from the start
position to the goal position. In our project [9], two robots
would cooperate and transfer the load from one to the other.
The state of the environment at a certain point in the future
should be known in advance.

In this study, we used three robots, each 48.3 cm tall
with an arm length of 10 cm which is almost same as that
of the humanoid robot HOAP-1 manufactured by Fujitsu
Automation Limited. The states of the robots were expressed
using 3D information (x coordinate, y coordinate, and rotation
angle around z axis).

First, the robot which has the load at the initial position
delivers it to another robot. The robot that receives the load
then transfers it on to yet another robot. The last robot carries
the load to the goal point. In order to transfer the load, the
robots have to cooperate and move to positions that are close
enough that the load can be transferred from one to another.

In this research, the following information was known in
advance.

• Models of the environment and robots
• Goal position for the load
• Procedure for cooperation

In order to carry out the experiment, which is described
later, we randomly created three environments: Environment

Fig. 2. Environment A

Fig. 3. Environment B

A (Fig. 2, 120 cm × 100 cm), Environment B (Fig. 3, 160
cm × 160 cm) and Environment C (Fig. 4, 160 cm × 160
cm). These environments are different in regard to symmetry
property and complexity. Each robot was in separate rooms,
divided by walls. The robots are not able to go beyond the
walls, but they are able to transfer the load back and forth
at points where the walls are low (points labeled “transfer
location” in the figures).

The goal position for the load was provided, but not the
goal positions for any of the robots. The cooperation proce-
dure consisted of a series of sub-tasks in which the robots
would cooperate, with the procedure indicated in Table I.

As conditions for a robot to pass the load to another robot,
the two robots would reach to within a distance of 25 cm, and

TABLE I
COOPERATION PROCEDURE

Sub-task no. Content of sub-task
1 Load transferred from Robot 1 to Robot 2
2 Load transferred from Robot 2 to Robot 3
3 Load placed at goal position by Robot 3



Fig. 4. Environment C

the offset from the angle at which they faced each other would
be 0.2 radians (approximately 10 degrees) or less. These were
the goal conditions for each sub-task and are hereafter referred
to as the “sub-goal conditions”.

Because the experiment targets humanoid robots, it is
assumed that they could move freely within the surrounding
area, and the environment is treated with the holonomic
constraint.

The planning algorithm proposed in this paper is imple-
mented in the MSL (Motion Strategy Library) [8].

A. Problems that occur when the normal RRT is applied

Simply using the normal RRT technique, a state space can
be set that expresses three robots at one time for application to
these environments. Then, the overall state space is 3 (robots)
× 3 (dimensions per robot) = 9-dimensional.

This situation, however, presents the following problems.
• The goal states for each of the robots need to be

explicitly provided.
• Wasteful movements occur that are unrelated to the task.

The first problem is a necessary condition in order to conduct
a bidirectional search. It is possible to provide only the
condition that will serve as the goal state and then search until
the goal state is reached, without conducting a bidirectional
search. However, this requires an extremely long execution
time, and is thus unrealistic.

The second problem occurs even if the goal states are
explicitly provided for each of the robots. With straight-
forward RRT, the planning for all three robots is executed
simultaneously. As such, even if one robot reaches a sub-goal
for cooperation, it takes time for the other robot involved in
the cooperation task to reach the sub-goal state, so the robot
exhibits meaningless operations such as moving away from
the state or moving closer to it. This is a problem that cannot
be avoided unless planning is performed individually for each
robot.

To reduce wasteful movements, searching needs to be
performed separately for each individual robot. To realize this,

Fig. 5. When conducting a search that includes a time parameter, a
bidirectional search is not possible unless the time to reach the goal state is
decided (example shows a search in a one-dimensional state space).

plan subtask(i)
if no more subtask(i) then

return Success;
r1, r2 := robots to cooperate(i);
for j = 1 to MAX RETRY do

plan ith subgoal(i, r1, r2);
plan subplan for robot(r1);
plan subplan for robot(r2);
adjust subplan length(r1, r2);
plan subtask(i + 1);
if status = Success then

return Success;
return Give up;

Fig. 6. Algorithm that generates a sub-plan for the i-th sub-task. If errors
occur in the routines within the “for” loop, it backtracks and retries the “for”
loop, but this has been omitted here for purposes of simplification.

a time parameter can be included as a state for each robot and
searching carried out. When searching is carried out including
a time parameter, however, it becomes difficult to conduct a
bidirectional search, because, in order to have the search tree
grow from the goal state side, the time to arrive at the goal
needs to be defined, as indicated in Fig. 5. Generally, it is
difficult to define in advance the time it will take to reach
the goal. If a bidirectional search is not carried out, however,
the searching efficiency drops sharply. We used the technique
proposed in the following section to solve this problem.

IV. PROPOSED TECHNIQUE

Our search technique is characterized by three features:
• There is no need to determine a final time or goal state

for each of the robots.
• RRT can be used to automatically generate the sub-goals

needed for the sub-tasks.
• In the planning for the sub-plans up to the sub-goals,

a search tree in which time is considered, and one in
which it is not, were used simultaneously. This enabled
bidirectional RRT searching and improved the searching
efficiency.

Here, the path plan up to the sub-goal for each robot working
in cooperation is called the “sub-plan”.

The planning algorithm is outlined by the following recur-
sive procedures (Fig. 6):



plan ith subgoal(i, r1, r2)
for k = 1 to K do

srand ← RANDOM STATE(r1);
if not (CONNECT(τ1, srand) = Trapped) then

scoop ← cooperative state of(s1);
CONNECT(τ2, scoop);
foreach s2 in τ2

if acceptable for subgoal(s1, s2) then
return (s1,s2);

srand ← RANDOM STATE(r2);
if not (CONNECT(τ2, srand) = Trapped) then

scoop ← cooperative state of(s2);
CONNECT(τ1, scoop);
foreach s1 in τ1

if acceptable for subgoal(s1, s2) then
return (s1,s2);

return Failure;

Fig. 7. Algorithm that generates the i-th sub-goal.

1) A pair of sub-goals corresponding to the i-th (1 ≤ i ≤
N ) sub-task is generated for the two cooperating robots.

2) The sub-plan is generated for each of the two robots to
reach their sub-goals.

3) The final times of the two sub-plans are aligned.
4) The procedure is executed recursively with respect to

the (i + 1)-th sub-task.
An algorithm based on RRT is used to generate the

sub-plans. Because RRT is a probabilistic algorithm, errors
sometimes occur in the generation of sub-plans (assuming
a sub-plan can even be generated). If an error occurs in
generating a sub-plan, backtracking is carried out, and the
process is redone from the sub-goal generation step. When
the (i − 1)-th sub-goal was not generated properly, errors
would occur many times in the generation of either the i-th
sub-goal or the sub-plan. In that case, backtracking of the
(i− 1)-th sub-goal is carried out and the procedure is redone
from the generation of the (i − 1)-th sub-goal.

A. Generating sub-goals

In generating sub-goals, planning is carried out in an
environment in which robots other than the two cooperating
robots do not exist. This is equivalent to giving priority in
sub-plans to the two cooperating robots over other robots.

The algorithm for generating sub-goals is as shown in
Fig. 7. The basic algorithm is the same as the RRT with
bidirectional searching (RRT-ConCon). The respective RRTs
are generated from the current states of the two robots that
are to work cooperatively together. However, the bidirectional
trees extend search trees towards each other, in the direction
of a “state Scoop that satisfies the sub-goal conditions” (a
distance of 20 cm between the two robots, with an offset of
zero from the angle at which they face each other). If a pair
of states that satisfy the conditions is found, those states are
returned.

In this sub-goal generation, planning is performed without
including a time parameter. Because no time parameter is

plan subplan for robot(r)
repeat

t ← t + δt;
if is collision free(t, sr) and sr = ssubgoal then

add state to plan(r, t, sr);
else

status := plan toward subgoal(r, t, sr);
if not (status = Success) then

return status;
until t + δt ≤ tend;

Fig. 8. Algorithm that generates the sub-plan (r is the robot ID, t is the
start time, sr is the state at the start time, ssubgoal is the sub-goal state of
the robot r, and tend is the end time of the sub-plan).

included, high-speed planning is possible.

B. Generating sub-plans

After a sub-goal has been generated, the paths (sub-plans)
taken by the respective robots to reach the sub-goal are
created. In doing this, times are taken into consideration, and
sub-planning is carried out in such a way that even if the
other robots are moving at the same time, the robots do not
collide.

As shown by the “plan subtask()” routine (Fig. 6) of
the two robots (here called r1 and r2) that are working
cooperatively together, planning is initially carried out to
move the robot r1 that has the load to the sub-goal. Planning
is then carried out to move the other cooperating robot r2 to
its sub-goal without colliding with robot r1. The planning for
robot r2 is done in such a way that the time at which the
robot r1 arrives at the sub-goal state serves as the end time.
Planning is arranged so that, if the time is at the end time or
a subsequent time, the robot r1 remains at rest at the sub-goal
state. The planning for robot r1 may be carried out without
taking the end time into consideration.

In other words, the sub-plan generation algorithm is as
follows (Fig. 8):

1) If the robot has the load (i.e., r = r1) and its state
is the sub-goal state and a non-collision state, sub-plan
generation ends.

2) If the state is the sub-goal state and a non-collision
state, and the end time has not been reached, that state
is put into the sub-plan.

3) If the sub-goal state and non-collision state are in effect
and the end time has been reached, sub-plan generation
ends.

4) In any other state, planning toward the sub-goal is
carried out (plan toward subgoal()).

5) Repeat from 1.
In the “plan toward subgoal()” routine (Fig. 10), planning

towards a sub-goal state is carried out. This is realized with
RRT using bidirectional search effectively.

A search tree Tw/time that includes a time parameter (in
other words, a search for states in which the robot does
not collide with other robots) grows from the state sinit at



(a) The search trees extend from both sides.

(b) The search trees from both sides join together
at a certain state.

(c) When the search trees are joined together, the
search tree that does not include time is canceled.

(d) The search is continued.

Fig. 9. Bidirectional searching using a search tree that included time and
using a search tree that did not include time (the example shows a projection
of a two-dimensional space, with the time axis perpendicular to the page).

which the robot planning begins. At the same time, a search
tree Tw/o time that does not include a time (in other words,
a search for the robot’s movable areas in which no other
robots are present) grows from the sub-goal state ssubgoal

of the robot (Fig.9(a)). Like the bidirectional search RRT,
these grow toward a random-sampled state. If the two search
trees are connected (Fig.9(b)), Tw/o time is re-initialized (in
other words, the results are destroyed before completion), and
the search is continued (Fig.9(c)). Tw/time is retained at that
point. By doing this, the growth of the Tw/time search tree
that includes a time is guided by the Tw/o time search tree

plan toward subgoal(r, t, sr)
Tw/o time.init(ssubgoal);
for k = 1 to K do

srand ← RANDOM STATE(r);
if not (EXTEND(Tw/time , srand) = Trapped) then

if is reached(Tw/time , ssubgoal) then
return path(Tw/time , ssubgoal);

if (EXTEND(Tw/o time, srand) = Reached) then
Tw/o time.init(ssubgoal);

srand ← RANDOM STATE(r);
if not (EXTEND(Tw/o time, srand) = Trapped) then

if (EXTEND(Tw/time , srand) = Reached) then
Tw/o time.init(ssubgoal);

if is reached(Tw/time , ssubgoal) then
return path(Tw/time , ssubgoal);

s ← ssubgoal;
if (EXTEND(Tw/time, s) = Reached) then

return path(Tw/time , ssubgoal);
return Failure;

Fig. 10. Algorithm for planning toward a sub-goal state.

that does not include a time, which improves the searching
efficiency. The algorithm is as shown in Fig.10.

In this study, the EXTEND operation was also used toward
the sub-goal state in all cases except for bidirectional search-
ing. This enables more efficient searching in cases where the
robot can advance directly toward the sub-goal state.

C. The alignment of the end time of plans

After plans are generated for all sub-tasks, the end times
of the plans are aligned to that of the longest one in robots.
For this purpose, all plans are filled with non-collision state
until reaching the end time of the longest one.

V. EXPERIMENTS

In order to estimate the computational overhead for the
proposed technique, we have compared the execution times
using normal RRT with our technique. The environments
shown in Figs. 2, 3 and 4 were used. The cooperation
procedure employed was described in Table I. The computer
used for the experiments was an Athlon XP 3200+ (2.2 GHz)
with a Linux operating system. The number of retries for each
sub-plan (the MAX RETRY parameter in Fig.6) was set to
be 5.

Table II shows the comparison result. We plotted one of
the generated plans by the proposed technique in Fig. 11.

In order to apply the normal RRT (RRT-ConCon, Fig.1),
goal states have to be explicitly provided for each of the sub-
tasks. With that in mind, we randomly chose a pair of sub-
goal positions for each of the sub-tasks from the “transfer
locations”. For the robots that are unrelated to a sub-task,
we set sub-goal positions for them to stay at their current
positions. The planning time was measured for each sub-task,
and the total figures were listed in Table II. The maximum
execution time of each of the sub-tasks is set to 10 minutes.



TABLE II
COMPARISON OF EXECUTION TIMES WITH THE PROPOSED TECHNIQUE

AND WITH NORMAL RRT (RRT-CONCON). (THE PERCENTAGES IN

PARENTHESES ARE RELATIVE TO THE RESULT USING NORMAL RRT AS

THE STANDARD.)

Execution time (sec)
Proposed method normal RRT

Environment A 13.08 (254.2%) 5.15 (100.0%)
Environment B 41.52 ( 13.1%) 315.92 (100.0%)
Environment C 95.29 ( 17.9%) 533.24 (100.0%)

Fig. 11. One of generated plans by the proposed technique with environment
B.

With Environment A, about twice of the execution time
was required for the proposed technique, whereas with Envi-
ronment B, the execution time of the proposed technique was
shorter than that of the normal RRT. The execution time was
about 87% less than that of normal RRT. With Environment
C, the difference was about 82%.

VI. DISCUSSION

In section V, we compared the execution time with that
of normal RRT (RRT-ConCon). With Environment A, it was
about twice of normal RRT of the execution time for the
proposed technique, but with Environment B and C, the
execution time were very shorter than that of normal RRT.
They were about 80% less than that of normal RRT.

There are two possible reasons about the overhead of
the execution time of normal RRT. One reason may be
that the search space was broader and more complicated in
Environment B and C, so the problem in itself was more
difficult. Also, with the normal RRT, sub-goals were provided
for all of the robots, so the path searching included robots
that were not involved in the task. Therefore, extra time was
required in the execution of the normal RRT. Considering
these results, the execution time for the proposed technique
was longer than that with the normal RRT. However, we can
confirm that the more difficult the problem, the more likely
the overhead will be relatively small.

VII. CONCLUSION

In this paper, we proposed a planning algorithm using RRT
to operate multiple robots cooperatively in a task. We tested
the proposed technique in simulations, and have confirmed its
effectiveness.

Further improvements in the search efficiency of the algo-
rithm will be sought. According to Kuffner et al, probabilistic
selection of the node for extension based on the area of its
Voronoi region is proved to be effective [3]. By incorporating
this result, the search performance can be improved in difficult
problems.

Also, we intend to conduct experiments applying this
algorithm to humanoid robots in a real environment.
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