
Identification of Weak Motifs in Multiple Biological
Sequences using Genetic Algorithm

Topon Kumar Paul and Hitoshi Iba
Department of Frontier Informatics

The University of Tokyo
5-1-5 Kashiwanoha, Kashiwa-shi

Chiba 277-8561, Japan

topon@iba.k.u-tokyo.ac.jp, iba@iba.k.u-tokyo.ac.jp

ABSTRACT
Recognition of motifs in multiple unaligned sequences pro-
vides an insight into protein structure and function. The
task of discovering these motifs is very challenging because
most of these motifs exist in different sequences in different
mutated forms of the original consensus motif and thus have
weakly conserved regions. Different score metrics and algo-
rithms have been proposed for motif recognition. In this
paper, we propose a new genetic algorithm based method
for identification of multiple motifs instances in multiple bi-
ological sequences. The experimental results on simulated
and real data show that our algorithm can identify multiple
occurrences of a weak motif in single sequences as well as in
multiple sequences. Moreover, it can identify weakly con-
served regions more accurately than other genetic algorithm
based motif discovery methods.

Categories and Subject Descriptors: I.5.2 [PATTERN
RECOGNITION]: Design Methodology—Pattern analysis;
I.2.8 [ARTIFICIAL INTELLIGENCE] : Problem Solving,
Control Methods, and Search—Heuristic methods; I.2.6 [AR-
TIFICIAL INTELLIGENCE]: Learning—Knowledge acqui-
sition, parameter learning; J.3 [LIFE AND MEDICAL SCI-
ENCES] : Biology and genetics

General Terms: Algorithms, performance

Keywords: Motif discovery, (l, d) motif, protein binding
site, regulatory sites, DNA sequences, genetic algorithm,
clustering

1. INTRODUCTION
In molecular biology, a motif is a weakly conserved nu-

cleotide or amino-acid sequence pattern that is widespread
and has, or is conjectured to have, a biological significance
[22]. These motifs in the promoter region of a gene, where
a transcription factor molecule binds, are called promoter
sequences or transcription factor binding sites (TFBSs) mo-
tifs. Recognition of these promoter sequences is important

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

in understanding the regulations of gene expression of a
gene. The similarity between the promoter sequence and
the consensus motif determines the strength of the binding
of the transcription factor to promoters. In general, the
more closely the promoter sequence resembles the consen-
sus sequence, the stronger the promoter [8]. Mutations in
the consensus motifs create different motifs instances that
may present in different coregulated genes, and these mo-
tif instances have weakly conserved regions. Therefore, the
methods of identifying the motifs in multiple DNA sequences
that rely on common substrings or words will likely fail [23].

Many computational approaches have been proposed for
recognition of motifs in DNA or amino acid sequences.
Broadly, these algorithms can be divided into two groups:
deterministic and nondeterministic. Most deterministic al-
gorithms use regular expression based rules to specify some
classes of allowable patterns for motifs, and these algorithms
are in nature exhaustive. Pratt [12] and TEIRESIAS [19] are
examples of two deterministic algorithms that use regular
expression rules to identify motifs. MDScan [16] is another
enumerative deterministic algorithm that, instead of regular
expressions, uses higher order Markov model and maximum
a posterior (MAP) score to evaluate candidate motifs. On
the other hand, most nondeterministic motif discovery algo-
rithms are non-exhaustive and stochastic in nature, and in
different runs, they may find different motifs that may or not
be the optimal one. For scoring of a subsequence as a possi-
ble motif, these algorithms usually use probabilistic models
based on either position weight matrices or position spe-
cific score matrices. These stochastic algorithms typically
contain more information than regular expressions and are
well-suited for modeling phenomena poorly represented by
regular expressions [24]. Some popular motif discovery tools
are MEME [1], CONSENSUS [9], Gibbs sampling [17, 14],
MotifSampler [25], AlignACE [20], and BioProspector [15].
Of these algorithms, AlignACE, BioProspector and Motif-
Sampler are based on Gibbs sampling method while MEME
is based on expectation maximization technique.

Recently, another stochastic approach, genetic algorithms,
has been used for identification of motifs in multiple un-
aligned DNA sequences [5, 3, 6]. In these evolutionary com-
putation methods, different methods of fitness calculation
are used and only one motif per sequence is assumed. How-
ever, in a sequence, multiple similar motifs may exist, and
identification of those motifs is equally important to identi-
fication of a single motif per sequence.

271

The(l, d)-motif discovery problem, as introduced by
Pevzner and Sze [18], is a mathematical abstraction of the
biological motif discovery problem, and it was proposed to
highlight the limitations of the most motif recognition algo-
rithms. The (l, d)-motif problem is defined as the discovery
of the locations of the l-length motifs in biological sequences
that are all mutated at most d positions in the original motif.
For this problem, various approaches have been proposed,
e.g. graphical approach [26], voting algorithm [4], random
projections [2], clustering algorithm [24], etc. Most of these
algorithms use exhaustive searches to determine all the (l, d)
motifs embedded in different sequences for a shorter l.

In this paper, we propose a novel genetic algorithm based
method for identification of multiple (l, d) motifs in each
of the given sequences. The main advantage of our pro-
posed method is that it can handle longer motifs and can
identify multiple positions of the motif instances of a con-
sensus motif. We then extend this method for detection of
weakly conserved regions in unaligned DNA sequences us-
ing an alignment score metric, which is an extension of the
‘information content’ method [23, 9]. We performed experi-
ments on simulated and real data to demonstrate the effec-
tiveness of our proposed method. The experimental results
show that our method is able to detect multiple (l, d) motif
instances in different sequences, can cope with longer mo-
tifs, and can identify weakly conserved regions in the given
sequences effectively.

2. TERMS AND NOTATIONS
We use the term motif instances to mean the (l, d) degen-

erative motifs of length l that are mutated at most d symbol
positions of an original motif. The pattern shared by these
motif instances is referred to as a consensus or a consensus
motif. The population of the genetic algorithm is a collec-
tion of these consensus motifs. Sometimes, we use individual
to mean a consensus motif and denote it by X or Y . We
use the term weakly conserved regions to mean those motifs
that have some positional similarity in their subsequences,
and those regions are identified by using an alignment score.
Sometimes, we use motif to mean a single motif instance or
a family of motif instances (like ‘CRP’ motif).

Throughout this paper, we use Li to denote the length of
the sequence i, N to denote the number of sequences and mi

to denote the number of motif instances in sequence i that
are mutated at p positions where 0 ≤ p ≤ d or d < p = dmin.
dmin is the minimum number of mutations needed to get the
original consensus motif from a degenerative motif. Other
terms and notations are described in places of their uses.

3. IDENTIFICATION OF MULTIPLE
MOTIFS

Our multiple motif discovery starts with a candidate con-
sensus motif. For this motif, we scan all the sequences one
by one to detect subsequences that are either at most d mu-
tations away or at minimum distance from the consensus
motif. For example, if the given three sequences are:

CAGAGCAACAATTCATTTTCATAGAGAAA,

TAAGAGCAAATTGGCCAATAGCAATT and

AAGAGCACATTTGGCGTATAGCAATCGACTCT,

the (7, 1) degenerative motifs for the consensus AGAGCAA

Generate initial population by randomly picking
subsequences from the biological sequences

Evaluate each individual using the
fitness function

Terminate? Get motifs
Yes

No

Select two parents randomly based on fitness

 Apply mutation with probability pm

Apply one-point crossover with probability pc

All offspring
 generated ?

Yes

No

Evaluate offspring using the fitness function

Combine old population and new offspring to
generate new population for next generation

Figure 1: Flowchart of our motif discovery algorithm

are:

1: AGAGCAA, AGAGAAA;

2: AGAGCAA, ATAGCAA;

3: AGAGCAC, ATAGCAA.

Then we score that individual (consensus motif) using the
proper fitness function. To maintain a population of mul-
tiple consensus motifs and to generate new candidate solu-
tions, we use genetic algorithm [10, 7].

Genetic algorithm (GA) is a population based stochas-
tic method that has been widely used to solve complex
functional optimizations. GA starts with a population of
randomly generated possible candidate solutions (individu-
als). The population of individuals is then bred over many
generations in a domain independent way using the Dar-
winian principle of survival of the fittest and an analog
of the naturally-occurring genetic operation of crossover.
The crossover operation is designed to create syntactically
valid offspring from parents that are probabilistically se-
lected based on their fitness at solving the problem at hand
[13]. The flowchart of genetic algorithm for motif discovery
problem is shown in figure 1. In the next subsections, we
discuss the initial population generation, fitness calculation,
and offspring generation in a genetic algorithm for the motif
discovery problem.

3.1 Initial population generation
Each individual of the population is a fixed-length string

of symbols taken from the alphabet. Each of these indi-
viduals can be initialized by randomly taking a symbol for

272

each position. For an alphabet Σ, there are |Σ|l possible
candidate consensus motifs; for example, for nucleotide se-
quences, there are 4l candidate strings while for amino acid
sequences, there are 20l candidate strings. If we randomly
generate an initial population, and population size<< |Σ|l,
we may miss some strings that are the true motifs of the
sequences. Instead, we generate the initial population by
randomly picking l-length subsequences from the given bi-
ological sequences (nucleotide /amino acid sequences). The
motivation behind this is that since the motifs are embed-
ded in the sequences, some subsequences or their mutated
subsequences will be the true consensus motifs.

3.2 Evaluation of a candidate consensus motif
Each individual is evaluated depending on the problem

at hand. We propose different fitness evaluations for (l, d)-
motif discovery problem and for detection of weakly con-
served regions.

3.2.1 Fitness calculation for (l, d)-motif problem
For (l, d)-motif discovery problem, we develop a fitness

function with the following characteristics:

• it prioritizes a motif instance that has fewer number
of mutated symbols from the consensus motif;

• it assigns the better score to a candidate consensus
motif that has true motif instances in all sequences;

• it prefers a candidate consensus motif that has more
than one motif instance in all sequences.

The fitness function is as follows:

fitness(X) = γ

N∑
i=1

(
mi∑
j=1

λ(d−dj)w(j)

)
(1)

where

γ is a bonus coefficient,
N is the number of sequences,
mi is the number of motif instances of sequence i
that have either 0 ≤ dj ≤ d or d < dj = dmin,
λ ≥ 2 is a constant used to give distance based weight to

a motif, and
w(j) is the frequency based weight of motif j.

The bonus coefficient (γ) is used to give a bonus to a con-
sensus motif that has found at least one (l, d) motif instance
in all sequences. This is necessary to distinguish the score
of a consensus motif having one motif instance with di = d
in each sequence from the score of a consensus motif having
some motif instances with di = 0 in some sequences. Let
us give an example. Suppose that there are 6 sequences,
and we are looking for (6,1) motifs in the sequences. If a
consensus motif X has motif instances with distance 1 in all
sequences, its score will be 6 (w(1) = 1, λ = 2 and excluding
γ). If another consensus motif Y has motif instances with
distance 0 in 3 sequences and with distance 2 in other three
sequence, its score will be greater than 6. In this case, Y
will be assigned better fitness than X; however, X is more
preferable to Y . Therefore, we need to give a bonus to X to
make it better than Y . The bonus coefficient is calculated
as follows:

γ =

{
B if each sequence has at least one (l, d) motif;
1 otherwise

where B is the bonus value, and its value should greater
than or equal to λd (it is derived from the equation: Nγ >
(N − 1)λd).

The frequency based weight w(j) is used to give prefer-
ence to identification of motifs of similar types in different
sequences than identification of motifs of the same type in
a single sequence. This is needed because identification of
similar type of motifs in co-regulated genes is biologically
more important than identification of same type of motifs
within a single sequence. During calculation of weights for
multiple motifs within a single sequence, we assume that the
motifs are sorted in ascending order of their distances from
the consensus sequence; the minimum-distance motif gets
the highest weight. The weight of a motif j is calculated as
follows:

w(j) =

{
β(1−j) if dj ≤ d for j = 1, 2, . . . , mi,

β(d−dmin+1−j) if d < dj = dmin, j = 1, . . . , mi,

where β > 1 is a constant, and dmin is the distance of the
motifs that need the minimum dmin mutations to get the
consensus sequence X (individual). If for all motifs, d <
dj = dmin, we do not need to sort the motifs; otherwise,
we have to sort them so that the best matching motif gets
the highest weight. For example, suppose that we have got
seven (10,2) motifs in a sequence with distances as follows:

Motif 1 2 3 4 5 6 7
Distance 2 2 0 1 0 1 1

.

If we do not sort them, the first motif with distance 2 will
get wrongly the highest weight. Therefore, we sort them
and assign their weights as follows:

j 1 2 3 4 5 6 7
Motif 3 5 4 6 7 1 2
Distance 0 0 1 1 1 2 2
Weight 1 1

β
1

β2
1

β3
1

β4
1

β5
1

β6

.

The score will be:

λ2(1 +
1

β
) + λ(

1

β2
+

1

β3
+

1

β4
) + (

1

β5
+

1

β6
).

However, if the above unsorted motifs are embedded in three
sequences with motifs 2 and 3 in sequence 1, motifs 1 and 4
in sequence 2, and motifs 5, 6 and 7 in sequence 3, the score
would be

(λ2 +
1

β
) + (λ +

1

β
) + (λ2 + λ

1

β
+ λ

1

β2
).

This score is better than the above score, and this one will
get preference over the above one.

3.2.2 Fitness calculation for weakly conserved
regions

The (l, d)-motif discovery algorithm can be used to iden-
tify weak motifs when exact value of d is known but in prac-
tice, we do not know how many positions are changed in
a degenerative motif. If we assume very small d, we may
not find any motif instance in any sequence; if we assume
very large d, we will come across many degenerative mo-
tifs. For identification of weakly conserved regions, we need
some kind of alignment of the degenerative motifs identified
by the candidate consensus motif.

The two genetic algorithms [5, 3] that identify weak mo-
tifs from unaligned sequences search for the positions of the

273

motifs stochastically in the given sequences. Therefore, the
individuals in the population are vectors of positions and
a single motif per sequence is assumed. Afterwards, the
consensus motif is determined by majority voting. In our
approach, we start with a possible consensus motif (indi-
vidual), search similar motifs in each sequence, and cluster
those motifs of the sequences using an alignment score. Fi-
nally, we choose the cluster that has the highest alignment
score as the representative of the all the clusters in an indi-
vidual.

3.2.2.1 Alignment of subsequences.
Several methods for alignment of multiple sequences have

been proposed in the literature. Hertz and Stormo [9] have
proposed a relative entropy based score metric for alignment
of multiple sequences. The score metric is as follows:

Ialign =

l∑
i=1

∑
b∈Σ

fb,i logk

fb,i

pb
(2)

where l is the length of each sequence, fb,i is the observed
frequency of the symbol b at position i, Σ is the alphabet
of symbols (for DNA sequences, Σ = {A, C, G, T}), k is the
base of logarithm, and pb is the background probability dis-
tribution of symbol b. When all the symbols at each position
are the same, the information content will be the highest,
and the sequences will be optimally aligned. However, due
to linear summation of each positional information content,
the alignment may not be optimal. For example, consider
two alignments of 4 DNA sequences of length 2: {AT, AC,
AG, AA} and {AC, TC, AG, TG}. The information content
of the first alignment using k = 2 is

Ialign1 = 1.0 ∗ log2
1.0

0.25
+ 4 ∗ 0.25 ∗ log2

0.25

0.25
= 2

while that of the second alignment is

Ialign2 = 2 ∗ 0.5 ∗ log2
0.5

0.25
+ 2 ∗ 0.5 ∗ log2

0.5

0.25
= 2.

Using these scores, we can not determine the best align-
ment (alignment 1) that has a conserved position (position
1). We propose non-linear combination of positional infor-
mation content as the score of an alignment. The score of
an alignment is calculated as follows:

Ialign = α

√
(Iα

1 + Iα
2 + · · · + Iα

l)/l (3)

where α is a positive integer greater than 1, and Ii is the
information content at position i. Using the score metric
(3), we get the scores of the above two alignments as follows
(α = 2):

Ialign1 =
√

(I2
1 + I2

2)/2 =
√

(22 + 02)/2 = 1.4142;

Ialign2 =
√

(I2
1 + I2

2)/2 =
√

(12 + 12)/2 = 1.0.

Since, Ialign1 > Ialign2, the first alignment will be chosen as
the optimum alignment, which is desired.

3.2.2.2 Clustering and scoring of the consensus mo-
tif.

For each consensus motif (individual) X, the following
steps are performed:

1. In each sequence, the subsequences that are at mini-
mum distance from X are determined. Let those sub-
sequences are {S11, S12, . . . S1n1}, · · · , {SN1, SN2, . . .
SNnN } where Sij is the subsequence j of sequence
i, and ni is the number of minimum distance subse-
quences of sequence i. Note here that distance(X,Si1)
=distance(X,Si2) = · · · = distance(X, Sini).

2. Next the number of clusters (groups) is determined.
In our method:

Number of clusters (c) = max{n1, n2, . . . , nN}.
Let the clusters are C1, C2, . . . , Cc. Each of these clus-
ters is initialized by taking one subsequence from the
largest group of subsequences {Si1, Si2, . . . , Sic}. Then
the consensus sequence X is added to each cluster.

3. Subsequences of the remaining sequences are added to
the clusters. There are many possible ways to add the
remaining subsequences to the clusters. One possible
way is determination of the cluster that will give the
best alignment for each subsequence; we use sequence
→ cluster to denote this method. Another way is
the finding of the subsequence that best aligns with
each cluster; we use cluster → sequence to denote
this method. In the second case, one subsequence may
be included in more than one cluster.

4. The clusters are saved, and the overall alignment score
is calculated. This alignment score is used as the fit-
ness of X.

Let us give an example of clustering of minimum-distance
subsequences. Suppose the three given DNA sequences are:
{AGAGCGACCGGAACCGTGCCCGGGACTGTATAAT,
AAACGAAAATACCGGGACCGGCGAAACCGGGA
CAGTTCAACTGGGACCG, CTGGGACCGATTCTA
CAAGTTTCCTTTTCTTA}, and X=CCGGGACCG. The
minimum distance subsequences are:

Sub1 ={CCGGAACCG, CCGGGACTG};
Sub2 ={CCGGGACCG,CCGGGACAG,CTGGGACCG} ;

Sub3 ={CTGGGACCG}.

Since Sub2 has the maximum number of subsequences, we
create 3 clusters containing its subsequences:

CCGGGACCG CCGGGACAG CTGGGACCG.

Next we add the X to every cluster:

CCGGGACCG CCGGGACAG CTGGGACCG
CCGGGACCG CCGGGACCG CCGGGACCG.

At this stage, suppose we want to add the subsequences of
Sub1 using sequence → cluster method. In this case, the
first subsequence goes to the first cluster, and the second
subsequence goes to the second cluster. Thus, the three
clusters become:

CCGGGACCG CCGGGACAG CTGGGACCG
CCGGGACCG CCGGGACCG CCGGGACCG.
CCGGAACCG CCGGGACTG

Finally the only subsequence of Sub3 best aligns with cluster
3. Therefore, the final clusters are:

CCGGGACCG CCGGGACAG CTGGGACCG
CCGGGACCG CCGGGACCG CCGGGACCG
CCGGAACCG CCGGGACTG CTGGGACCG.

274

After the creation of the clusters, we have to combine them
to get the fitness of X. There is no straightforward method
to get a combined score. For example, if the clustering
method uses sequence → cluster, the number of subse-
quences per cluster may not be the same. Some clusters
may have perfect alignments with fewer number of subse-
quences; some will have weaker alignments with one sub-
sequence from each DNA sequence. Another issue is how
to include the number of clusters in the computation of the
fitness of an individual. Calculation using an equation like
(3) is not effective because if individual X has only a cluster
with perfect alignment with score a and Y has two clus-
ters: one with perfect alignment and one with weak align-
ment with scores a and b, respectively, fitness of X (=a) will

be greater than fitness of Y (=
√

(a2 + b2)/2. However, Y
seems to be a better individual than X. In our experiments,
we have used cluster → sequence approach, and therefore
each cluster corresponding to an individual contains same
number of subsequences. We calculate fitness of an individ-
ual as follows:

fitness(X) = max{score1, score2, . . . , scorec} (4)

where scorei is the alignment score of cluster i, and c is the
number clusters in the individual. For alignment score, we
have used equation (3).

3.3 Offspring generation
We generate offspring from the selected parents through

one point crossover and substitute mutation. For crossover,
first a random crossover point is determined; then, the parts
after crossing over point are swapped. Suppose two selected
parents from the population are as follows:

AATATTCAT|ATCAGTTAGTCTT,
GCCTGCAAG|AGACGCGTTCAAG.

The crossover point is indicated by |. After crossing over,
the new offspring would be:

AATATTCAT|AGACGCGTTCAAG,
GCCTGCAAG|ATCAGTTAGTCTT.

For mutation, we apply multiple substitutions’ approach
for (l, d). First we determine the number of positions to be
mutated by randomly picking a value k from [1, d]. Then, we
randomly choose k positions in the selected individual and
mutate them. Suppose the selected parent and the mutation
points (in overlined, bold faces) are as follows:

TGTCTTCAC̄TCTGCTATTAGAAĀCC.

If the randomly chosen symbols for the selected positions
are G and C, respectively, the offspring generated through
mutation will be:

TGTCTTCAḠTCTGCTATTAGAAC̄CC.

For detection of weakly conserved regions, we perform a
single mutation in the selected individual.

3.4 Dealing with Poly-A and TATA box
In DNA sequences, there are abundant subsequences con-

sisting of something like ‘AAA...AAA’ (Poly-A) or ‘ATA...
TAAT’ (TATA-box). If precautions are not taken, any mo-
tif finding algorithm may terminate with either Poly-A or
TATA-box. To cope with this problem, one should count
the numbers of A, T, and (A,T) in the consensus and in

the sites selected as the minimum distance motifs, and if
they are more abundant than a threshold, the fitness of the
consensus motif (individual) should be reduced. In our ex-
periments, we set the threshold to 0.70 ∗ l; however, one
should determine it by trial-and-error.

3.5 Complexity of the algorithm
Suppose the lengths of the sequences are L1, L2, . . . , LN ,

and the length of the consensus motif is l.
For (l, d)-motif discovery problem, the number of searches

needed to find all minimum-distance motifs of an individual
X is:

SX = (l + 1)

N∑
i=1

(Li − l).

This includes the cost needed to calculate distances and to
extract the minimum distance motifs from the sequences.
If the population size is P , and the maximum number of
generations the algorithm runs is G, the overall searching
cost (SCoverall) of (l, d)-motif discovery problem will be:

SCoverall = GP (l + 1)
N∑

i=1

(Li − l). (5)

However, to find weakly conserved regions in the minimum
distance motifs, we need to cluster the motif instances using
an alignment score. Therefore, the cost associate with the
fitness of an individual is:

Scons = Searching Cost (SX)+Clustering Cost (CX).

The clustering cost can be calculated as follows:

CX = c(m1 + m2 + · · · + mN) ∗ A

where A is the alignment cost, c is the number of clusters
and mi is number of minimum distance subsequences from
sequence i. The total cost then becomes:

SCcons = GP (SX + CX). (6)

The total cost of an exhaustive search is
∏N

i=1 Li, which may
be much higher than the cost of our method (equation (6) or
(5)) for larger Li’s and N . For example, if N = 6, all Li =
1000, G = 500, P = 4000, l = 19, the cost of exhaustive
search would be 1018 whereas the cost of our method would
be approximately 24 × 1010 (ignoring clustering cost).

4. EXPERIMENTS
For our experiments, the values of different parameters are

listed in table 1. We have set a very high value to mutation
because a consensus motif is the the mutated version of motif
instances. We have tried with different values of population
size and offspring size, but the results presented in this paper
did not change much. However, if the length of either the
sequences or the consensus motif is larger, the population
size should be increased. We have used a roulette wheel se-
lection method for the selection of parents for crossover and
mutation. To generate a new population from the old popu-
lation and the new offspring, we have used elitism technique
(elite size=50%).

We performed experiments on the six sequences of CRP
motif, and 33 sequences of ArcA motif taken from http://

dragon.bio.purdue.edu/pmotif/ [11], and on the sequences
of LEU3 and MCB transcriptional factors of Saccharomyces
cerevisiae taken from http://rulai.cshl.edu/SCPD/ [21].

275

Table 1: Values of different parameters
Parameters Values
Population size 1000 (2000)
Offspring size 500 (1000)
Maximum generations 100
Crossover probability 0.5
Mutation probability 0.8
Background frequency (pb) 0.25
α 2
λ ((l, d)-motif problem) 2
β ((l, d)-motif problem) 10

Table 2: Summary of (10,2) motifs found by our
method from the sequences of MCB transcriptional
factor
Consensus Score #Motifs Comments
AAAGAATAAA 115.32 18 highest score
AAAGATCAAA 62.10 9 lowest score
AAAGAAAAAA 95.43 29 highest #motifs
CAAGAATATA 71.0 7 lowest #motifs

4.1 (l, d)-Motif discovery
First, we performed experiments to identify (l, d) motifs

from the sequences of MCB transcriptional factors. For this
problem, we set: l = 10, d = 1, and B = 10. Our algorithm
did not find any consensus sequence that has (10,1) motifs in
all sequences. The best consensus found is ACGCGTTAAA
with score of 6.01 (rounded to two decimal points), and the
identified motif instances in the six sequences are:

Seq Motifs
1 ATGCCTTAAC, ACGCGTAACT,

AAGCATTAAT
2 ACGCGTGAAA
3 ACGCGGGTAA, ACGCGTCGGA
4 ACGCGTTCAA
5 ACGCGTTAAA
6 ACGCGTTAAA.

However, by setting d = 2, we turned up with 19 consen-
sus motifs that have at least one (10,2) motifs in the se-
quences of MCB transcriptional factors. Some of the char-
acteristic consensus sequences are shown in table 2. Most of
the 19 consensus sequences are sequences of Poly-A/TATA-
box. By penalizing the consensus sequences containing Poly-
A/TATA-box, we came up with only 10 consensus sequences
instead of 19.

Next, we performed experiments on the sequences of ArcA
motif family. For this problem, we first made 33 different
(61,5) motif instances of the following motif consensus:

GATTAAGCGCAAATAGCGTTTGCTGTGTTAT
TGACAGTTAGCATAAACTAGGTGTGACGTT.

Then we insert these 33 motif instances at random positions
of 33 original sequences of ArcA. By running our algorithm
with B=32, population size=2000 and offspring size=1000,
we found the 16 consensus sequences that had at least one
(61,5) motif in each of the modified sequences. The consen-
sus sequences are shown in table 3. Of these, the second one
is the original consensus sequence, and the rest 15 consensus
sequences are its rotated and/or mutated versions.

Table 4: CRP motifs identified by our method
Seq Position Motif
1 136 TATGTTATCCACATCACAA
2 64 AAAGTGAACCATATCTCAA
3 375 TATGTGATTGATATCACAC
4 59 TGTGTGATCGTCATCACAA
5 37 TGTGTGAAGTTGATCACAA
6 137 TCTGTGATTGGTATCACAT

The above experiments demonstrate the effectiveness of
our GA based (l, d)-motif discovery algorithm. However, it
remains unresolved whether evolution occurred in the algo-
rithm or not. In all cases, we got at least one consensus
sequence having at least one (l, d) motif in all the sequences
and having higher fitness value. When the algorithm con-
tinued running, the best fitness value did not change giving
the impression that evolution did not take place at all. To
make it sure that evolution occurred, we investigated the
number of consensus sequences of real (l, d) motifs in the
initial population as well as in the final population. In the
case of (10,2)-motif discovery problem of MCB sequences,
the number of consensus sequences of (10,2) motifs in the
initial population was 10 while that in the final population
was 19. In the case of (61,5) motifs of ArcA sequences, the
number of proper consensus motifs in the initial population
was 2 while that in the final population was 16. This ev-
idence strongly suggests that evolution took place in our
algorithm.

4.2 Real motifs from biological sequences
For CRP motif, we collected six sequences each of length

502 from the database mentioned above. The motifs embed-
ded in these sequences are:

• AATGTTATCCACATCACAA;
• AAAGTGAACCATATCTCAA;
• CTTGTGATTCAGATCACAA;
• TGTGTGATCGTCATCACAA;
• TGTGTGAAGTTGATCACAA;
• TATGTGATTGATATCACAC.

By performing experiments, we turned up with the results
shown in table 4. The consensus determined by our method
is TATGTGATCGATATCACAA. To compare our method,
we performed additional experiments with binary GA that
searched for the positions of the motifs using the score of
equation (2) as fitness of an individual. Each individual
was a vector of positions of possible motifs. The values of
population size, offspring size, and maximum number of gen-
erations were the same as that of our algorithm. However,
we set crossover and mutation probability to 0.9 and 0.1, re-
spectively since the algorithm searched for positions instead
of consensus sequences. The motifs identified by this binary
GA from the sequences of CRP are presented in table 5.
Our method identified the second, fourth and fifth motifs
correctly but the binary GA identified none of the motifs
correctly. Moreover, our method identified the conserved
regions more accurately than the binary GA.

For MCB transcriptional factors, we extracted the six se-
quences from positions -500 to +50 of transcription start
site of regulated genes of Saccharomyces cerevisiae. The mo-
tifs embedded in the sequences are {ACGCGT, ACGCGA,
CCGCGT, TCGCGA, ACGCGT, ACGCGT} and the con-

276

Table 3: Different consensus sequences of (61,5) motifs of ArcA sequences
Serial# Consensus motifs

1 TGATTAAGCGCAAATAGCGTTTGCTGTGTTATTGACAGTTAGCATAAACTAGGTGTGACGT
2 GATTAAGCGCAAATAGCGTTTGCTGTGTTATTGACAGTTAGCATAAACTAGGTGTGACGTT
3 AGATTAAGCGCAAATAGCGTTTGCTGTGTTATTGACAGTTAGCATAAACTAGGTGTGACGT
4 GGATTAAGCGCAAATAGCGTTTGCTGTGTTATTGACAGTTAGCATAAACTAGGTGTGACGT
5 TGATTAAGCGCAAATAGCGTTTGCTGTGTTGTTGACAGTTAGCATAAACTAGGTGTGACGT
6 TGAATAAGCGCAAATAGCGTTTGCTGTGTTATTGACAGTTAGCATAAACTAGGTGTGACGT
7 TGATTAAGCGCAAATAGCGTTTGCTGTGTTTTTGACAGTTAGCATAAACTAGGTGTGACGT
8 TGAGTAAGCGCAAATAGCGTTTGCTGTGTTATTGACAGTTAGCATAAACTAGGTGTGACGT
9 TGATTAAGCGCAAATAGCGTTTGCTGTGTTATTGACAGTTAGCATCAACTAGGTGTGACGT

10 TGATTAAGCGCAAATAGCGTTTGCTGTGTTCTTGACAGTTAGCATAAACTAGGTGTGACGT
11 TGATTAAGCGCAAATAGCGTTTGCTGTGTTATTGACAGTTAGCATGAACTAGGTGTGACGT
12 TGATTAAGCGCAAATAGCGTTTGCTGTGTTATTGACAGTTAGCATTAACTAGGTGTGACGT
13 TGGTTAAGCGCAAATAGCGTTTGCTGTGTTATTGACAGTTAGCATAAACTAGGTGTGACGT
14 TGCTTAAGCGCAAATAGCGTTTGCTGTGTTATTGACAGTTAGCATAAACTAGGTGTGACGT
15 TGTTTAAGCGCAAATAGCGTTTGCTGTGTTATTGACAGTTAGCATAAACTAGGTGTGACGT
16 TGATTAAGCGCAAATAGCGTTTGCTGTGTTGTTGACAGTTAGCTTAAACTAGGTGTGACGT

Table 5: CRP motifs identified by binary GA with
fitness defined by equation (2)

Seq Position Motif
1 4 ATTAACCGCCCCTGACGAT
2 0 AATCACCTCATTTTTCGCT
3 264 ACACTACTCACATTTAAAT
4 16 AATTCATTAATATTTTAGT
5 11 CATCAATGAGTCCTAAACG
6 69 ATATAATTATTATTAACCT

Table 6: LEU3 motifs identified by our method
Consensus Seq Position Motifs
CCGGGACCGG 1 301 CCGGAACCGG

2 284 CCGGGACCGG
CCGTAACCGG 1 301 CCGGAACCGG

2 314 CCGTAACCGG
1 301 CCGGAACCGG

CCGGAACCGG 2 284 CCGGGACCGG
2 314 CCGTAACCGG

sensus sequence is WCGCGW. By our method, we got the
motifs as {ACGCGT, ACGCGT, ACGCGT, ACGCGT, AC
GCGT, ACGCGT}, and the consensus is ACGCGT, which
is a true consensus motif; the multiple occurrences of this
consensus were correctly identified. With binary GA, we
got the following motifs in the six sequences: {TTTCGA,
TCACCA, TCACGT, TGACGA, TCACGA, TAACGG};
none of these motifs are the true motifs.

For LEU3 transcriptional factors, we extracted two se-
quences from positions -500 to +50 of transcription start
site of two regulated genes of Saccharomyces cerevisiae. The
consensus motif is CCGNNNNCGG. The motifs identified
by our method are shown in table 6. Besides these motifs,
our method also identified other 19 possible motifs (false
positives) that had the same score as these motifs of LEU3.

By applying binary GA, we got the following motifs:

• Poly-A and TATA-box penalized:
{CGAATCTCTT, CGGTTCTTTT}

• Poly-A and TATA-box are not penalized:
{ATAATTATAC, ATACCTTTAC},
{TAATTATACT, TACCTTTACT}.

However, none of these are the motif instances of the con-
sensus motif of LEU3.

5. DISCUSSION
For both the problems that we have addressed in this pa-

per, the starting population is very important. If we start
with the individuals that have each been initialized by ran-
domly chosen symbols from the alphabet, we may not find
any solution at all. If the alphabet size is |Σ|, there are |Σ|l
possible consensus motifs of length l; of which, some will
be the real weak motifs. Neither searching with all possible
consensus motifs nor starting with some sequences will be
feasible. Instead, if we start with randomly chosen subse-
quences from different sequences as the starting population,
the possibility of finding a good solution will be higher as
compared to exhaustive search because original motifs are
embedded in the sequences in mutated form, and mutations
of some of these sequences may restore the original motif.

In some of our experiments, we have found that the initial
population contained some of the desired consensus motif se-
quences with high scores, and in subsequent generations, the
best motif did not change, and in the final population, some
of the motif consensus sequences were lost. However, evo-
lution took place, and new consensus sequences were pro-
duced. To prevent loss of some initial motifs and to keep
diversity, we can save in each generation those motifs that
have higher score than the threshold and continue searching.

In our method for identification of conserved regions, we
have used the maximum value of alignment scores of dif-
ferent clusters. Due to this reason, our method will not
distinguish between an individual having one cluster with
perfect matching subsequences, and another individual with
two clusters–one having perfect matching sequences and an-
other one having less perfect matching, though the second
one is the best individual. By using a fitness function like the
fitness function of (l, d)-motif discovery problem, this limi-
tation may be overcome. We want to address this problem
in our future works.

277

Prevention of selection of motifs containing either Poly-
A or TATA-box is necessary because in DNA sequences,
these type of sequences are abundant, and if we do not take
measures to cope with them, we may not be able to iden-
tify potential motif and the motif instances. However, what
threshold should be used to prevent their selection is prob-
lem specific and may be determined through trial-and-error.

6. CONCLUSIONS
In this paper, we have proposed a novel genetic algorithm

based method for identification of multiple weak motifs in
multiple biological sequences. Unlike past practices of find-
ing single motif per sequence, we have emphasized on iden-
tification of multiple motif instances of a consensus motif
in a single sequence. First, we have shown how multiple
(l, d) motifs of a biological sequence should be scored to get
a combined fitness of a consensus sequence, and then we
have shown how this method can be extended to identify
weakly conserved regions in multiple sequences. Moreover,
our method is applicable when we do not know the exact
value of d for the (l, d)-motif problem. By performing ex-
periments on simulated and real data, we have shown the
effectiveness our proposed method.

Though our method seems to be very effective for deter-
mination of either (l, d) motifs or weakly conserved regions,
it is not 100% perfect for identification of transcriptional
factor binding sites in the upstream regions of co-regulated
genes. Like other computational methods of motif discovery,
our method looks for similar subsequences in multiple bio-
logical sequences; many of these similar subsequences have
no biological significance. However, some of the more fre-
quent subsequences can be ignored if they follow the random
distribution of the whole genome of the species and if some
biological knowledge are incorporated in the experiments.
In our future work, we want to utilize this information.

7. REFERENCES
[1] T. L. Bailey and C. Elkan. Unsupervised learning of

multiple motifs in biopolymers using expectation
maximization. Machine Learning, 21:51–80, 1995.

[2] J. Buhler and M. Tompa. Finding motifs using random
projections. J. Comput. Biol., 9(2):225–242, 2002.

[3] D. Che, Y. Song, and K. Rasheed. MDGA: Motif discovery
using a genetic algorithm. In Proceedings of GECCO2005,
pages 447–452, 2005.

[4] F. Y. L. Chin and H. C. M. Leung. Voting algorithms for
discovering long motifs. In APBC, pages 261–271, 2005.

[5] G. B. Fogel, D. G. Weekes, G. Varga, E. R. Dow, H. B.
Harlow, J. E. Onyia, and C. Su. Discovery of sequence
motifs related to coexpression of genes using evolutionary
computation. Nucleic Acids Research, 32(13):3826–3835,
2004.

[6] J. Gertz, L. Riles, P. Turnbaugh, S.-W. Ho, and B. A.
Cohen. Discovery, validation, and genetic dissection of
transcription factor binding sites by comparative and
functional genomics. Genome Research, 15:1145–1152,
2005.

[7] D. E. Goldberg. Genetic Algorithms in Search,

Optimization, and Machine Learning. Addison-Wesley,
Reading, MA, 1989.

[8] D. L. Hartl and E. W. Jones. Genetics, Analysis of Genes
and Genomes, page 407. Jones and Bartlett Publishers,
sixth edition, 2005.

[9] G. Z. Hertz and G. D. Stormo. Identifying DNA and
protein patterns with statistically significant alignments of
multiple sequences. Bioinformatics, 15:563–577, 1999.

[10] J. H. Holland. Adaptation in Natural and Artificial
Systems. The University of Michigan Press, 1975.

[11] J. Hu, B. Li, and D. Kihara. Limitations and potentials of
current motif discovery algorithms. Nucleic Acids
Research, 33(15):4899–4913, 2005.

[12] I. Jonassen, J. F. Collins, and D. Higgins. Finding fexible
patterns in unaligned protein sequences. Protein Science,
4(8):1587–1595, 1995.

[13] J. R. Koza and D. Andre. Automatic discovery of protein
motifs using genetic programming. In X. Yao, editor,
Evolutionary Computation, pages 171–197. World
Scientific, 1999.

[14] C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu,
A. F. Neuwald, and J. C. Wootton. Detecting subtle
sequence signals: a gibbs sampling strategy for multiple
alignment. Science, 262:208–214, 1993.

[15] X. Liu, D. L. Burtlag, and J. S. Liu. Bioprospector:
discovering conserved DNA motifs in upstream regulatory
regions of co-expressed genes. Pacific Symposium on
Biocomputing, 6:127–138, 2001.

[16] X. S. Liu, D. L. Brutlag, and J. S. Liu. An algorithm for
finding protein-DNA binding sites with applications to
chromatin immunoprecipitation microarray experiments.
Nat. Biotechnol., 20:835–839, 2002.

[17] A. F. Neuwald, J. S. Liu, and C. E. Lawrence. Gibbs motif
sampling: detection of bacterial outer membrane protein
repeats. Protein Science, 4:1618–1632, 1995.

[18] P. A. Pevzner and S.-H. Sze. Combinatorial approaches to
finding subtle signal in dna sequences. In Intelligent
System for Molecular Biology, pages 269–278, 2000.

[19] I. Rigoutsos and A. Floratos. Combinatorial pattern
discovery in biological sequences: the TEIRESIAS
algorithm. Bioinformatics, 14:55–67, 1998.

[20] F. P. Roth, J. D. Hughes, P. W. Estep, and G. M. Church.
Finding DNA regulatory motifs within unaligned
noncoding sequences clustered by whole-genome mRNA
quantitation. Nature Biotechnology, 16:939–945, 1998.

[21] SCPD: The Promoter Database of Saccharomyces
Cerevisiae. URL: http://rulai.cshl.edu/SCPD/.

[22] Sequence motif-Wikipedia. URL:
http://en.wikipedia.org/wiki/Sequence motif.

[23] G. D. Stormo and G. W. Hartzell. Identifying
protein-binding sites from unaligned DNA fragments.
Proceedings of National Academy of Science, 86:1183–1187,
1989.

[24] M. P. Styczynski, K. L. Jensen, I. Rigoutsos, and G. N.
Stephanopoulos. An extension and novel solution to the
(l,d)-motif challenge problem. Genome Informatics,
15(2):63–71, 2004.

[25] G. Thijs, K. Marchal, M. Lescot, S. Rombauts, B. De
Moore, P. Rouze, and Y. Moreau. A Gibbs sampling
method to detect overrepresented motifs in the upstream
regions of coexpressed genes. J. Comput. Biol., 9:447–464,
2002.

[26] X. Yang and J. C. Rajapakse. Graphical approach to weak
motif recognition. Genome Informatics, 15(2):52–62, 2004.

278

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

