
Using Memetic Algorithms To Improve Portfolio
Performance In Static And Dynamic Trading Scenarios

Claus Aranha
Department of Electrical Engineering

The University of Tokyo
Tokyo, Japan

caranha@iba.t.u-tokyo.ac.jp

Hitoshi Iba
Department of Electrical Engineering

The University of Tokyo
Tokyo, Japan

iba@iba.t.u-tokyo.ac.jp

ABSTRACT

The Portfolio Optimization problem consists of the selection
of a group of assets to a long-term fund in order to minimize
the risk and maximize the return of the investment. This is
a multi-objective (risk, return) resource allocation problem,
where the aim is to correctly assign weights to the set of
available assets, which determines the amount of capital to
be invested in each asset.

In this work, we introduce a Memetic Algorithm for port-
folio optimization. Our system is based on a tree-structured
genome representation which selects assets from the market
and establish relationships between them, and a local hill
climbing function which uses the information available from
the tree-structure to calculate the weights of the selected
assets.

We use simulations based on historical data to test our
system and compare it to previous approaches. In these
experiments, our system shows that it is able to adapt to
aggressive changes in the market, like the crash of 2008,
with reduced trading cost.

Categories and Subject Descriptors

J.1 [Administrative Data Processing]: Financial; I.1.2.8
[Artificial Intelligence]: Problem Solving, Control Meth-
ods and Search

General Terms

Algorithms, Experimentation

Keywords

Memetic Algorithms, Portfolio, Operational Research,

1. INTRODUCTION
Investment Portfolios are used by financial institutions in

the management of long term funds, like savings accounts,
retirement funds, etc. The idea of an investment portfolio

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’09 July 8–12, 2009, Montréal Québec, Canada.
Copyright 2009 ACM 978-1-60558-325-9/09/07 ...$5.00.

0.3

a1

0.2

a2

0.5

0.7

a2a4
a5

a1 a2 a3 a4 a5

Weight

Name AMZN GOOG INTL MSFT YHOO

0.22 0.3500.03 0.4

Figure 1: A tree genome and its corresponding port-
folio. The values in the intermediate nodes indicate
the weight of the left sub tree. The complement of
that value is the weight of the right sub tree. The
final weight of each asset (ax) is given by the sum
of the weights of all occurrences of that asset in the
tree.

is that if it is unwise to keep money still, for it loses value
over time, it is also too risky to invest everything into a
small number of assets, for it exposes the capital to sudden
changes in the market.

The Markowitz Portfolio Model [9] describes how to min-
imize the risk of a financial portfolio, by distributing the
capital into multiple, counter correlated assets. This model
can be used to calculate the optimal distribution of capital
in order to minimize the risk of an investment, for a given
target return.

While the Markowitz Model for portfolio optimization con-
cerns itself with the optimal portfolio for a snapshot of the
market (a single set of return and risk values), in real life we
are also concerned with fluctuations in the market over time
and how to dynamically adjust the Portfolio in response to
those fluctuations. We call these adjustments Rebalancing
the portfolio; the main challenge when rebalancing a portfo-
lio is to change its position enough to keep desired levels of

1427

risk and return, while avoiding the trading costs associated
with any changes in the position.

Portfolio Optimization is a problem that has been popular
with the genetic algorithm community in recent years. The
reason for this is that when the problem is stated with real
life constraints, like a large number of assets, trading lots
and weight restrictions, it becomes too hard to solve with
deterministic methods. Evolutionary Algorithm approaches
have shown good results in this situation.

However, so far most works have concentrated on the so-
lution of single-scenario cases of the portfolio optimization
problem. In this work, we explore the use of Memetic Algo-
rithms for the long-term management of Portfolios.

Memetic Algorithms are an hybrid heuristic of a genetic
algorithm and local optimization. In general, the genetic
algorithm improves the solution in large strokes, while the
local optimization fine tunes the solutions generated by the
GA. We have chosen to extend the Tree-based Genetic Al-
gorithm, described by Aranha in [2], with a hill climbing
algorithm. We call the new system MTGA (Memetic Tree
based Algorithm). The GA generates a tree structure (Fig-
ure 1) that includes information about the relationship of
the assets in the market, while the hill climbing algorithm
fine tunes the weights between those assets.

We propose that the hybridization of the MTGA leads to
an increased performance of portfolio generation, when com-
pared with pure GA solutions, and that the local optimiza-
tion step can be used to perform rebalancing in Dynamic
Market scenarios. To validate these proposals, we used sim-
ulated experiments based on historical data of large markets
in the last three years.

Our results are very encouraging, and point towards the
validity of using local optimization for improving Genetic
Algorithms with real valued genome representations, and of
using Memetic Algorithms to provide solutions that are able
to adapt to dynamic environments.

2. THE PORTFOLIO PROBLEM
The resource allocation problem is a traditional optimiza-

tion problem, which consists of distributing a limited “re-
source” to a number of “jobs”, in order to satisfy one or
more utility functions [5].

The Portfolio Optimization problem falls in this category.
The limited resource is the capital available for investment,
and the jobs are the varied assets in which this capital can be
invested (for example, company stock or foreign currency).
The utility functions in this problem are the Estimated Re-
turn of the portfolio, to be maximized, and the Risk, to be
minimized. By reducing its risk, the investment becomes
less susceptible to drastic changes in the market.

The model for the Portfolio Optimization problem was
formally proposed by Markowitz [9]. Markowitz’s Portfo-
lio Model could be solved by deterministic methods, like
quadratic programming [16]. However, when adding real
world constraints to the problem (for example, large number
of assets, restrictions to the values of weights, trading costs,
etc), the search space becomes large and non-continuous,
and heuristics, such as evolutionary computation, must be
used to solve the problem.

2.1 The Markowitz Model
Let us define a portfolio P as a set of N real valued weights

(w0, w1, ...wN) which correspond to the N available assets

Figure 2: Risk-return projection of candidate port-
folios. The search space is bounded by the Efficient
Frontier. Sharpe ratio is the angle of the line be-
tween a portfolio and the risk-free rate.

in the market. These weights must obey two basic restric-
tions [16]: The total sum of the weights must be equal to
one; and all weights must be positive.

The utility of a portfolio is measured by its Estimated
Return and its Risk. The estimated return is calculated as:

RP =
N

X

i=0

Riwi (1)

Where N is the total number of assets, Ri is the given es-
timated return of each asset, and wi is the weight of each
asset in the portfolio. In this work, the estimated return
is calculated as the moving average of the past 12 months
for each asset, but other estimation methods can be used
instead.

The risk of an asset is given as the variance of its return
over time (variability). The risk of the portfolio is defined
as:

σp =
N

X

i=0

N
X

j=0

σijwiwj (2)

Where σij , i 6= j is the covariance between i and j, and
σii = σ2

i is the deviation of the estimated return of asset i.
While the risk is usually stated as the variance of the return
of a given asset, there are other definitions of risk that have
been used to bias the resulting portfolios towards certain
kinds of investment strategies. For other risk metrics, see
the works of Harish[12] and Shu[10].

These two utility measures can be used separately to de-
termine the optimal portfolio, or they can be combined. The
Sharpe Ratio measures the trade off ratio between risk and
return for a portfolio, and is defined as follows:

Sr =
RP − Rriskless

σp

(3)

Where Rriskless is the risk-free rate, an asset which has zero
risk and a low return rate (for example, government bonds).
The relationship between these three utility measures is il-
lustrated in Figure 2.

2.2 Dynamic Market Behavior
We call Dynamic Portfolio Optimization, or Rebalancing,

the problem of generating a trading strategy that keeps the
optimized portfolio with a high level of return and risk, ac-
cording to the policies of the portfolio operator, in face of

1428

a dynamically changing market. This policy must modify
the optimized portfolio according to changes in the return
values of the assets in the market, so that the target return
is achieved in spite of those changes.

The main question when rebalancing a portfolio is how
to reduce the trading cost. To change from portfolio P to
portfolio P ′, there is an operational cost proportional to the
difference between P and P ′. Usually, the trading cost C

takes a form similar to:

Ca =

(

kc if 0 < Ta < Tmin

Ta ∗ δc if Ta > Tmin

(4)

C =
X

Ca (5)

Where Ca is the cost associated with the trading of one
asset, and Ta is the amount of the asset actually traded. This
cost is either a fixed minimum value (kc), for transactions
below a certain amount (Tmin), or a percentage of the total
transaction value (δc), if the transaction is above Tmin.

In some situations, the cost to rebalance the portfolio to
the new global optimum in a dynamic market environment
may be higher than the improvement in the utility function.
To avoid problems like this, it is essential to add a new goal
to the Dynamic Portfolio Optimization problem: to mini-
mize the transaction cost, also represented as the distance
between two portfolios.

3. RELATED RESEARCH
The portfolio Optimization Problem has enjoyed a lot of

popularity in recent years. While multiple authors have tried
variations of the main approaches in this field, we can group
the main lines of work in two different ideas: Weight Arrays
and Trading strategies, which are differentiated mainly by
whether different weights for each asset are calculated or not,
and whether all assets are evaluated at once, or separately.

In particular, we have not yet observed the use of hybrid
heuristics, like Memetic algorithms, to bridge the gap be-
tween these two approaches among the current literature.
We expect that our current work can help fulfill that role.

3.1 Weight Arrays
The main line of research in Portfolio Optimization using

Evolutionary computing is the use of some sort of array as
the genome for an individual, with the goal of using the GA
operators to optimize the weight values in the array.

In the array representation an individual is composed of
an array A with as many elements as there are assets in the
market. Each element ai is a real value, that defines the
exact weight of that particular asset in the portfolio. A few
representative examples of this approach would be [7, 4].

However, it is hard for the normal Genetic Algorithms
operators (crossover, mutation) to fine tune the values of
real valued genomes without specialized crossover operators
[13]. Intuitively, regular crossover operators usually take the
value of either of the parents, or their average, as the new
value for a chromosome. This covers all possible values for
binary valued chromosomes, but not so for real valued ones.

Another problem with this representation is that the real
valued array does not include information about the covari-
ance relationship between the different assets, which makes
the search blind to a important piece of information in the
utility function.

Specially, the large number of assets in real world markets
makes it impractical to expect that crossover and mutation
alone be able to converge the weights of an array with pos-
sibly hundreds of assets. In [8], a subset of all the assets is
randomly chosen to form the weight array, which illustrates
the difficulty of optimizing the values of multiple assets.

To address this issue, some works used an hybrid repre-
sentation with binary and real valued arrays [1, 11]. The
binary array defines whether an asset is part of the portfolio
or not, while the real valued array evolves the weight for all
assets.

While this approach solves partially the problem of mul-
tiple assets not related to the optimal portfolio making it to
the final solution with very small weights, it does nothing
to relieve the problem of fine tuning individual weights of
assets, or establishing relationships between them.

3.2 Trading Strategies
The other popular approach to the Portfolio Optimization

problem with evolutionary algorithms is the use of Trading
Strategies. We define a trading strategy system as one where
the focus is not in defining the weight of each asset, as in the
previously discussed works. Instead, the Trading Strategies
approach consists of analyzing each asset individually, and
using some sort of evolved rule to decide if each particular
asset should be part of the portfolio or not.

In one example of this line, Szeto creates rules based on
the values of moving averages with different lengths to decide
if a certain asset will or will not be included in the portfolio
[6]. Wei and Clack, use more complex GP rules, which in-
clude varied indicators of each assets financial performance
to generate a decision of whether including an asset or not
in a portfolio with a limited number of open “slots” [14, 15].

However, after the assets are chosen, equal weights are
assigned to all assets participating in the portfolio, which
makes us wonder if a better result would not be achieved by
optimizing the final weights of these chosen assets as well.

4. MEMETIC TREE-BASED GENETIC AL-

GORITHM
The MTGA is an extension to the TGA algorithm de-

scribed in [2]. TGA introduced a new genetic structure to
resource allocation problems. In this tree structure (fig 1),
the leaves of the tree are the assets to be optimized, and
the intermediate nodes express the relative local weights be-
tween these assets.

The TGA’s tree representation, when compared to an ar-
ray representation of weights, is able to express and learn
relationships between assets, and it also allows for parts of
the genome to be evaluated by the fitness function, which
led to specific crossover operators.

In the MTGA, we add a local optimization step to the this
system. The optimization step uses a hill climbing algorithm
on the local weights (intermediate nodes) of the tree, in a
recursive bottom-up fashion, so that for each node only a
simple two variable optimization needs to be done. There
are two main motivations for the use of Memetic Algorithms
in this problem.

The first motivation is that Memetic Algorithms are be-
lieved to be more appropriate for real valued genomes than
pure Genetic Algorithms [13]. This is because the stan-
dard crossover and mutation operators in GA are not well

1429

suited for finely tuning real-valued variables in the genome
representation. This is specially true for the TGA, where
crossover and mutation only operate on the tree structure
of the genome, and can only affect weights indirectly, by
manipulating the depth in the tree where an asset is found.

So we add the local optimization step to fine tune the
weight parameters. The optimization becomes a two-stage
process: In the first stage, the crossover and mutation oper-
ators select the assets, and establish relations between them
using the tree structure. In the second stage, the local op-
timization directly modifies the weights of the intermediate
nodes to establish the optimal weights for the assets given
the tree structure of that individual.

The second motivation is to implement portfolio rebalanc-
ing, as presented in section two, using the local optimiza-
tion step. This allows us to minutely change the weights of
each asset belonging to a portfolio, adapting it to changes in
the market, while maintaining its structural characteristics.
This form of rebalancing generates portfolios that, while
not optimal when considering only the risk/return objec-
tive functions, have a very low distance from the previously
held portfolio, and thus very low trading costs associated
with them.

4.1 Tree Representation
An individual’s genotype in MTGA is represented as a

binary tree.
Each non-terminal node holds the weight between its two

child sub trees. This weight is a real value, w, between 0
and 1 inclusive. The left sub tree has weight w, and the
right sub tree of has weight 1 − w.

Each terminal node holds the index of an asset in the mar-
ket. It is possible to have more than one terminal pointing
to the same asset in the same tree. Figure 1 shows this
representation.

To extract the portfolio from this representation, we cal-
culate the weight of each terminal node by multiplying the
weights of all nodes that need to be visited to reach that ter-
minal, starting from the root of the tree. After all terminal
nodes are visited, the weights of those terminals that point
to the same asset are added together. The assets which are
not mentioned in the tree are assigned a weight of 0 (i.e.
they have not been selected to the portfolio).

There are some characteristics of this structure which are
important to consider when implementing an Evolutionary
Algorithm based on it:

First Every sub tree in an individual can be treated as if
it were a normal tree. This is because the root node’s
structure is identical to that of any intermediate node.
This allows each sub tree to have its own individual
fitness, calculated in the same way as the fitness of
the main tree. This is used in the specialized genetic
operators.

Second A portfolio extracted from this representation is
always normalized. This is because the weight on each
node is limited to the 0..1 interval, and the weight of
each terminal is the multiplication of the node weights.
Because of the first characteristic, this also applies to
sub trees.

Third The maximum number of assets in a portfolio rep-
resented by a tree is limited by the depth of the tree.

0.2

0.50.4

0.6 0.60.30.1

a1a3 a3 a2 a1 a2 a4 a5

0.2

0.4

0.30.1

a1a3 a3 a2

0.8

a4 a5

0.9

a5

0.1

a3

Mutation

Crossover

BadGood GoodBad

ChildParent 2Parent 1

Figure 3: Crossover (BWS) and Mutation operators
for the tree representation.

As each terminal corresponds to one asset, a tree with
depth d may hold at most 2d−1 assets. Because of
incomplete trees and terminals with repeated assets,
usually the actual number of assets in a tree is much
smaller than this.

4.2 Evolutionary Operators
Because of its tree representation, the basic crossover and

mutation operators of MTGA are similar to those of a GP.
Mutation occurs by cutting off the tree at one point, and ran-
domly generating a new sub tree from that point. Crossover
occurs by switching sub trees of two individuals at a ran-
domly chosen point. In our implementation, the cut-off
point is selected by first randomly choosing the target depth,
and then following a randomly selected path from the root
to that depth.

Besides these basic operators, MTGA also includes the
Best Worst Sub tree (BWS) crossover operator. In this op-
erator, the sub tree with the highest fitness from one par-
ent is exchanged with the sub tree with worst fitness of the
other parent (see Figure 3). This operator uses the recur-
sive fitness characteristic of the tree based representation
to improve the exploitation characteristics of the genetic
search [2].

In our implementation, the probability that the BWS crossover
will be executed instead of a regular crossover during the
breeding step of the generic algorithm is controlled by a pa-
rameter. In the experiments reported, this parameter is set
as 0.6. The influence of the value of the BWS parameter in
the final result is not examined in this work.

4.3 Local Search Step
The MTGA improves over the TGA by adding a local

optimization step. This step aims to finely tune the inter-
mediate weights in the tree representation. It complements

1430

the structural search done by the crossover and mutation
operators.

A common question in Memetic Algorithms is how often
should local learning be applied [3]. If you apply it to all
individuals in the population, the entire algorithm may be-
come too costly. We have opted for using a parameter that
determines the probability of one individual being selected
for local optimization. For the experiments discussed in this
paper, this probability was set at 0.6.

At the start of every generation, a number of individuals
from the population is chosen with the above probability.
Before the fitness evaluation step, we execute the local op-
timization on these selected individuals.

For each selected individual, the local search operator per-
forms a recursive hill climbing optimization. Algorithm 1 is
executed, starting from the root node. The algorithm calls
itself, descending to the deepest level of the tree where the
risk and return value of the two-asset portfolio of that node
is calculated. This calculation is performed by algorithm 2.
After all intermediate nodes in the bottommost level are cal-
culated in this way, the resulting values are used to calculate
the two asset portfolio for the nodes one level above, repeat-
ing this process recursively until the program returns to the
root node.

Algorithm 1 Recursive Tree Optimization(tree node)

if Child Nodes are not leaves or locally optimized then
Recursive Tree Optimization(left child)
Recursive Tree Optimization(right child)

end if
weight = Local Search(this node)
Calculate Risk and Return (weight)
return New Risk and Return Values

Algorithm 2 Local Search(tree node)

Require: Child nodes are leaves or locally optimized.
Ensure: Current node is locally optimized

while (meme speed > meme thresh) AND
(0 < weight < 1) do

old fitness = fitness

weight = weight + meme speed

if weight > 1 then
weight = 1

end if
if weight < 0 then

weight = 0
end if
calculate fitness(weight)
if fitness < old fitness then

meme speed = meme speed ∗ meme accel ∗ −1
end if

end while

In algorithm 2, meme speed, meme accel and meme thresh
are parameters. meme speed is the value by which the weight
changes every iteration; meme accel must be < 1.0, and
is the value by which meme speed changes every time the
weight cross the optima point; and meme thresh is the min-
imum value of meme speed which signalizes the end of the
search. The search also ends if the weight reaches 1.0 or 0.0.

A side-effect of the local optimization is the generation
of Introns in an individual’s genome. An intron is a part
of the genotype that do not affect the phenotype. In this
representation, an intron is a sub tree that does not influence
the final portfolio, because its parent node has a local weight
equal to 0 or 1.

While introns are known to increase processing time and
complexity of results in GP, they also allow for more variety
in individuals generated from crossover, and, in the partic-
ular case of the MTGA, can be useful if reactivated during
rebalancing (see next subsection). In this work, we do not
prune introns from the genome.

4.4 Rebalancing
Rebalancing means making small adjustments and correc-

tions on a portfolio over time, in order to adapt it to changes
in the market conditions.

We can use the local optimization step described above
to achieve this. Just as the local optimization adjusts the
weights of an individual after crossover and mutation have
taken place during normal evolution, we expect that it can
in the same way correct the weights of the final individual
after changes in the market values.

In practice, at first a portfolio is created by running the
MTGA, and choosing the best individual of the final pop-
ulation. The tree structure (genotype) of this individual is
kept. Then, after a certain amount of time (defined by the
trader’s policy) has passed, new values for the estimated re-
turn and correlation between the assets is calculated. Based
on these new values, the system executes algorithms 1 and
2 on the tree structure of the original portfolio, generating
the rebalanced portfolio.

By executing the rebalancing strategy in this manner, the
portfolio completes the asset selection in the initial time pe-
riod, and from then on it uses only the assets already se-
lected. So, if it can guarantee a good initial asset selection,
the rebalancing policy will be able to react to market changes
to keep the return levels.

5. EXPERIMENTS
In order to verify the performance of MTGA, we execute

two simulation experiments which explore different aspects
of the problem.

In the first experiment, we evolve a portfolio using the
MTGA on different markets and scenarios (time periods),
comparing the performance of this portfolio with other evo-
lutionary approaches and the market index. The goal of
this experiment is to establish to what degree Memetic Al-
gorithms are better at fine tuning the values of portfolio
weights, and what influence this have at the portfolio’s per-
formance.

In the second experiment, we apply the MTGA to a dy-
namic trading scenario. The MTGA generates the portfolio
at the start of a 12 month period, and the portfolio is re-
balanced monthly using the local optimization method pre-
viously described. We compare this with another trading
policy where the portfolio is re-generated from scratch, and
with the market index. Their monthly return and difference
amount are compared. The goal of this experiment is to es-
tablish whether the local optimization step of the Memetic
algorithm can be used to rebalance portfolios as proposed.

1431

5.1 Datasets
We use two data sets in our simulations. The NASDAQ

data set contains assets from the NASDAQ100 index, which
is composed mainly of technology related industry. The
SP500 data set contains assets from the S&P 500 index,
which has a more varied composition, with assets from in-
dustry of many different fields.

The NASDAQ data set contains 100 assets, and the S&P
has 500 assets to chose from and compose a portfolio.

For each data set, the log return of the monthly closing
value is used as the monthly return value of each stock. Val-
ues up to December 2008 are in the data sets, which were
obtained from freely available on-line sources. Of special in-
terest is the period starting from the later half of 2008, when
the economic crash generated a large amount of instability
in the asset values.

5.2 Parameters
We used the same parameters for all runs of evolutionary

algorithms mentioned here. The number of generations was
500, with 200 individuals per generation. The crossover rate
was 0.8 and the mutation rate was 0.03. The tree depth was
set at 8, with a maximum of 128 terminals in a full tree.
The riskless asset’s return was set at 3% (0.03).

For the MTGA system, we used a 0.6 chance of executing
the local search step for each individual. The chance of
executing the guided crossover was 0.6 per crossover. The
sensitivity of the system for these parameters is not explored
in this work.

The parameter for the local optimization step are: 0.1 for
meme speed, 0.333 for meme delta, and 0.003 for meme thresh.
Other than meme thresh, which changes the precision of the
search, changing these values does not seem to affect the
quality of the local search.

5.3 Portfolio Generation experiment
In the first experiment, we generate portfolios for var-

ious scenarios in the two data sets and compare the re-
sults between the proposed method, the previous GA based
method, and the benchmark index value. The goal is to an-
alyze whether using the local optimization step to fine tune
weights allow us to reliably produce better portfolios.

For each run of the MTGA and the TGA, we repeated
the experiment 20 times with different random seeds. The
results displayed here are the average of these 20 runs.

A summary of the results of this experiment can be seen on
table 1. The Sharpe Ratio values of the Benchmark index,
the TGA and the MTGA are listed, along with the TTest
value between the TGA and the MTGA.

As can be seen in the table, both the MTGA and the
TGA are able to beat the benchmark index, with the MTGA
achieving consistently better scores than the TGA.

A closer analysis of the results show that both methods
achieve the high Sharpe ratios by minimizing the risk, rather
than increasing the return. In fact, while the return stays at
an average of 0.4 to 0.6 for both methods, the very low risk
values are responsible for the high increase in Sharpe ratio.

On the downside, the MTGA on average consumed com-
putation time one order of magnitude above the TGA. Ta-
ble 2 shows the average times for the two data sets. Since
we are using a simple policy to decide which individuals un-
dergo local optimization, it is expected that a cleverer policy
might mitigate this somewhat.

Dataset TGA MTGA
NASDAQ 2 min. 10 min.

SP500 5 min. 50 min.

Table 2: Time expended for the Portfolio Genera-
tion Experiment (average)

5.4 Dynamic Trading experiment
In the second experiment, we try to generate and maintain

a portfolio for a 12 month period. During this period, the
portfolio is rebalanced monthly. We compare the rebalanc-
ing done by the local optimization step of the MTGA, with
a policy of generating a new portfolio from scratch using
the MTGA every month. The initial portfolio is generated
using the MTGA in the same way described in the previous
experiment.

We evaluate both approaches in two ways: first we com-
pare their results with the actual returns from the market
index for the period. This will show how stable the portfolio
was. Then we compare the differences of the portfolios at
each month in the one year period, to evaluate how much
trading cost each portfolio would have garnered.

We present the results of three scenarios: NASDAQ 2007,
NASDAQ 2008 and S&P 2007. The S&P in 2007 is a rea-
sonably stable index, while the NASDAQ 2007 has a more
pronounced variation. The NASDAQ 2008 scenario includes
the September market crash (preceded by a lesser crash in
March).

Figure 5.4 shows the return values for the portfolios rebal-
anced with local optimization and with re-evolution. Two
things become clear at first glance. The first is that the re-
turn values for both portfolios are reasonably constant, even
during the unstable period of 2008. The second is that the
difference in terms of returns of the two rebalancing methods
is rather small.

Investigating the data more closely we see the informa-
tion on table 3. It shows that, although the return results
were quite similar, the distance results where quite different.
As expected, the Portfolio which was rebalanced by running
the MTGA from scratch had much larger differences in the
positions held each month than the portfolio which was re-
balanced by the local optimization algorithm.

In particular, the result for the period of 2008 was partic-
ularly positive. In spite of the economic tension, reflected
in the strong changes in return for the index, the MTGA
managed to assemble a stable fund for the period.

6. DISCUSSION
While previous researches have shown the effectiveness of

Genetic Algorithms applied for Portfolio optimization prob-
lems, our experiments have shown that, by extending the
GA with a local optimization step, we were able to consis-
tently improve the performance of the algorithm to generate
Sharpe-Optimal portfolios.

This is because the local optimization step is able to finely
tune the weights of the assets which were selected by the
Genetic Algorithm. In the smaller NASDAQ100 market, the
advantage of the Memetic Algorithm was consistent. For the
larger S&P500 market, the results were more varied, but the
MTGA stayed ahead.

1432

NASDAQ100, 2006 S&P500, 2007
Date Index MTGA TGA TTest Date Index MTGA TGA TTest
Jul -1.85 85.43 76.42 0.42 Jul -3.28 1416.94 456.74 0.09
Aug 0.44 28.5 22.88 0.09 Ago -0.74 853.5 192.82 0
Sept 0.42 26.52 22.54 0 Sept 0.22 664.51 190.99 0.01
Oct 0.41 23.52 20.66 0.01 Oct -0.64 527.49 176.56 0
Nov 0.08 33.57 27.37 0 Nov -3.25 955.51 156.88 0
Dec -1.25 10.98 10.00 0.11 Dec -1.39 310.86 92.49 0

Table 1: Average Sharpe Ratio values for the Portfolio generation experiment.

Figure 4: Result of the Rebalancing Experiment. On the top row, full re-evolution in the scenarios NASDAQ
2007, NASDAQ 2008 and S&P 2007. On the bottom row, the same scenarios as above, but the results come
from using local optimization as the rebalancing technique.

Data set and Method Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec
NASDAQ ’07, Re-evolve 0 0.68 0.77 1.38 0.71 0.56 1.43 1.09 1.54 0.63 0.55 0.96
NASDAQ ’07, Local Op. 0 0.32 0.34 0.98 0.27 1.16 1.13 1.16 1.16 0.18 0.25 0.06
NASDAQ ’08, Re-evolve 0 1.80 1.00 0.52 1.01 0.62 0.87 0.44 0.36 1.24 1.86 0
NASDAQ ’08, Local Op. 0 0.42 0.68 0.55 0.86 0.34 0.33 0.32 0.22 0.75 0.61 0

S&P ’07, Re-evolve 0 1.73 1,07 1.54 1.84 1.34 1.72 1.88 1.76 1.73 1.48 1.84
S&P ’07, Local Op 0 1.18 0.31 1.25 0.55 0.42 1.23 0.58 2.01 2 2 2

Table 3: Distance Between rebalanced Portfolios

1433

However, this performance comes at a steep increase in
computational cost. Implementing a more complex policy
for deciding which individuals in a population will undergo
local optimization is a promising idea, since the current pol-
icy is to pick an arbitrary number of individuals, chosen
randomly.

Finally, on the dynamic trading scenario, it was observed
that by applying the principles of adaptation to changes in
the environment, the MTGA managed to keep a stable, low
risk return, even during the period of Market instability in
2008. We observed that using the local optimization step
allowed us to perform rebalancing with lower transaction
costs, by taking advantage of the assets chosen by the full
algorithm in the beginning of the period.

7. CONCLUSION
In this work we hybridized the Tree based Genetic Algo-

rithm with a local search. The resulting MTGA was applied
to the problems of Portfolio Selection, Optimization and Re-
balancing.

Our results reinforce the idea that Memetic Algorithms
are generally more suited to solve problems with real-valued
representation than pure Genetic Algorithms. Also, the lo-
cal optimization step of the hybrid can be used to perform
small adaptations to changes in a dynamic environment.

Using these properties, we created a system which is able
to select and optimize a large number of financial assets into
a fund with stable return values, even under a situation of
market volatility. In practice, this line of research, in partic-
ular rebalancing, is important for companies which manage
large financial funds and must achieve a set level of return
either in bull or bear markets. However, the MTGA could
be used for other resource allocation problems which can
be described as optimizing a large number of real valued
weights. One example of such a problem is the evaluation
of game board positions.

We observed that as the number of assets grows, the vari-
ation of the final results achieved grew as well. This is either
because there are a large number of peaks in the search space
as the number of assets increase, or because at very small
variance values, a small change in the risk rate influences the
final Sharpe result greatly. Investigating this matter further
seems a promising venue.

Another approach which deserves more investigation is the
interaction of the“intron”nodes with the local optimization.
Does leaving inactive nodes inside a genome provides rele-
vant information for the local optimization to do its job? Or
is more gained by removing these nodes?

8. REFERENCES
[1] C. Aranha and H. Iba. Modelling cost into a genetic

algorithm-based portfolio optimization system by
seeding and objective sharing. In Proc. of the
Conference on Evolutionary Computation, pages
196–203, 2007.

[2] C. Aranha and H. Iba. A tree-based ga representation
for the portfolio optimization problem. In GECCO -
Genetic and Evolutionary Computation Conference,
pages 873–880. ACM Press, July 2008.

[3] W. E. Hart. Adaptive global optimization with local
search. PhD thesis, University of California at San
Diego, La Jolla, CA, USA, 1994.

[4] R. Hochreiter. An evolutionary computation approach
to scenario-based risk-return portfolio optimization for
general risk measures. In M. G. et al., editor,
EvoWorkshops 2007, number 4448 in LNCS, pages
199–207. Springer-Verlag, 2007.

[5] T. Ibaraki and N. Katoh. Resource Allocation
Problems - Algorithmic Approaches. The MIT Press,
1988.

[6] R. Jiang and K. Y. Szeto. Discovering investment
strategies in portfolio management: A genetic
algorithm approach. In Proceedings of the 9th
International Conference on Neural Information
Processing, volume 3, pages 1206–1210, 2002.

[7] C.-M. Lin and M. Gen. An effective decision-based
genetic algorithm approach to multiobjective portfolio
optimization problem. Applied Mathematical Sciences,
1(5):201–210, 2007.

[8] P. Lipinski, K. Winczura, and J. Wojcik. Building
risk-optimal portfolio using evolutionary strategies. In
M. G. et al., editor, EvoWorkshops 2007, number 4448
in LNCS, pages 208–217. Springer-Verlag, 2007.

[9] H. Markowitz. Mean-Variance analysis in Portfolio
Choice and Capital Market. Basil Blackwell, New
York, 1987.

[10] S. ping Chen, C. Li, S.-H. Li, and X. wei Wu. Portfolio
optimization with transaction costs. Acta
Mathematicae Applicatae Sinica, 18(2):231–248, 2002.

[11] F. Streichert, H. Ulmer, and A. Zell. Evolutionary
algorithms and the cardinality constrained portfolio
optimization problem. In D. Ahr, R. Fahrion,
M. Oswald, and G. Reinelt, editors, Operations
Research Proceedings. Springer, September 2003.

[12] H. Subramanian, S. Ramamoorthy, P. Stone, and B. J.
Kuipers. Designing safe, profitable automated stock
trading agents using evolutionary algorithms. In
GECCO 2006 - Genetic and Evolutionary
Computation Conference, pages 1777–1784, Seattle,
Washington, July 2006. ACM Press.

[13] B. Ullah, R. Sarker, D. Cornforth, and C. Lokan. An
agent-based memetic algorithm (ama) for solving
constrained optimization problems. In IEEE Congress
on Evolutionary Computation (CEC), pages 999–1006,
Singapore, September 2007.

[14] W. Yan and C. D. Clack. Behavioural gp diversity for
dynamic environments: an application in hedge fund
investment. In GECCO 2006 - Genetic and
Evolutionary Computation Conference, pages
1817–1824, Seattle, Washington, July 2006. ACM
Press.

[15] W. Yan and C. D. Clack. Evolving robust gp solutions
for hedge fund stock selection in emerging markets. In
GECCO 2007 - Genetic and Evolutionary
Computation Conference, London, England, July
2007. ACM Press.

[16] Yuh-Dauh-Lyu. Financial Engineering and
Computation. Cambridge Press, 2002.

1434

