
Solution of n-Queen Problem Using ACO
Salabat Khan, Mohsin Bilal, M. Sharif, Malik Sajid, Rauf Baig

National University Of
Computer and Emerging Science

Islamabad, Pakistan
Email: salabat.khan@nu.edu.pk

Telephone: (+92)51-4532308

Abstract—In this paper, a solution is proposed for n-Queen
problem based on ACO (Ant Colony Optimization). The n-Queen
problem become intractable for large values of ‘n’ and thus
placed in NP (Non-Deterministic Polynomial) class problem. The
n-Queen problem is basically a generalized form of 8-Queen
problem. In 8-Queen problem, the goal is to place 8 queens
such that no queen can kill the other using standard chess queen
moves. So, in this paper, the proposed solution will be applied to
8-Queen problem. The solution can very easily be extended to the
generalized form of the problem for large values of ‘n’. The paper
contains the detail discussion of problem background, problem
complexity, Ant Colony Optimization (Swarm Intelligence) and
a fair amount of experimental graphs.

Index Terms—n-Queen Problem, 8-Queen Problem, Heuristic
Techniques, Ant Colony optimization (ACO), Swarm Intelligence
(SI).

I. INTRODUCTION

The problems in computer science can be grouped in
different classes on the basis of time required to find a correct
solution. The class ‘P’ contains all those decision problems
for which polynomial time algorithms exist [1]. The problems
which can be solved in polynomial time on a non-deterministic
computer are placed in ‘NP’ class. The non-deterministic
computer is a theoretical computer that does not exist. This
theoretical computer contains infinite amount of resources to
spawn as many processes as there are possible solutions to
a problem. Note that however, solution to a problem in ‘NP’
can be verified in polynomial time [1]. In order to tackle the
problems in ‘NP’, heuristic techniques are used.

The n-Queen problem is also an intractable problem i.e.
for large values of ‘n’ the problem can not be solved in
polynomial time and thus placed in ‘NP’ class. There are total(

n2

n

)
number of possible arrangements of ‘n’ queens on the

chessboard [2]. For 8-queen problem, there are 4,426,165,368
possible arrangements of queens on board out of which only 92
are correct solutions [3]. The solution to the n-Queen problem
proposed here is based on a heuristic known as “Ant Colony
Optimization”.

The remainder of this paper is organized as follows. In
the next section, we review related research. In Section III
we present the basics and the background of ant colony
optimization meta-heuristic. In Section IV, architecture of the
proposed solution will be discussed. Subsequently, in Section
V we present some simulation results to show the ability of
our approach. Finally, Section VI will conclude this work.

II. RELATED WORK

Previously, lots of work is done on this problem. K.
D. Crawford in [2], applied Genetic Algorithm and have
discussed two ways to solve n-Queen problem. Ivica et al.
provided a comparison of different heuristic techniques in [1].
The techniques include Simulated Annealing, Tabu Search and
Genetic Algorithm.

We found no solution to the problem based on Ant Colony
Optimization. So, we can say that this is first ever application
of ACO to the n-Queen problem. In order to apply ACO,
we first organized the search space. We then discussed a few
modifications in the calculation of some parameters for ACO.
We have added a few constraints in basic ACO as it can not be
applied directly to the n-Queen problem. A detail discussion
on all these is provided in the subsequent sections.

III. BASICS AND BACKGROUND OF ACO

The ant colony optimization (ACO) is a meta-heuristic that
is inspired by intelligent behaviors of ants. ACO is a multi-
agent system; an ant behavior depicts the behavior of an agent
in the system. The first ant algorithm was developed by Dorigo
[4]. Improvements in algorithm are made in [5],[6].Ants in
nature modify there environment by constantly depositing a
chemical substance called pheromone. The pheromone is used
as an indirect communication among ants and guides them to
find shortest path from their nest to a food place. If there
are multiple paths to a food place, ants choose one with high
concentration of pheromone. In Figure 1, one can logically
find that how a shortest path will be concentrated with the
high pheromone values as most of the ants on this path will
come back quickly.

A. Simple ACO algorithm

Let G = (V, E) be a connected graph where |V |shows total
number of nodes and total |E |number of edges in graph. The
simple ant colony optimization meta-heuristic can be used to
find the shortest path between a given source node Vs and
a given destination node Vd in the graph ‘G’[8]. The path
length is either given by the number of nodes on the path or
summation of cost values on edges constituting the path. Each
edge e(i, j) ∈ E of the graph connecting the nodes Vi and Vj

has a variable (artificial pheromone), which is modified by the
ants when they visit the nodes[8].

 978-1-4244-4873-9/09/$25.00 ©2009 IEEE

Fig. 1. Ants finding shortest path. a) No obstacle. b) Obstacle Placed. c)
Most ants on shortest path a few on longest. d) Ants found shortest path.

From a node, when an ant decides which node to move next,
it uses 02 parameters to calculate the probability of moving
to a particular node; first, distance to that node and second,
amount of pheromone on the connecting edge. Let di,j be the
distance between the nodes i and j, the probability that the ant
chooses j as the next city after it has arrived at city i where
j is in the set ‘S’ of cities that have not been visited is:

pi,j =
[τi,j]α.[ηi,j]β∑

k∈S [τi,k]α.[ηi,k]β
(1)

Where τi,j is the pheromone value on edge(i, j), ηi,j is
a heuristic value calculated as 1

di,j
. The parameters α and β

are influencing factors of pheromone value and heuristic value
respectively.

Some best ants (having good solutions) or all ants modify
the pheromone values on the edges added to their tour. One
possible modification may be done as:

τi,j = τi,j +
Q

L
(2)

Where Q is some constant and L is the length of the tour,
small the value of L high the pheromone value added to the
previous pheromone value on edge.

With time, concentration of pheromone decreases due to
diffusion affects; a natural phenomenon known as evaporation.
This also ensures that old pheromone should not have a too
strong influence on the future[7]. This can be done as:

τi,j = τi,j .ρ {where ρ will be between 0 and 1} (3)

Fig. 2. Search Space for n-Queen, ACO

IV. N-QUEEN ACO

N-Queen problem is to place ‘n’ queens on chessboard such
that no queen can kill the other using standard chess queen
moves. There are three such situations in which a queen can
kill the other; first, if two queens are in the same row, second,
if two queens are in the same column and third if one queen
is in the diagonal of the other queen.

A. Solution/ Search Space

In order to solve the n-Queen problem, basic ACO is mod-
ified and some constraints are added. Moreover, the equations
described above are also changed a little bit. The cores of this
solution include “formation of search space” & “calculation
of heuristic value”. In Figure 2, formation of search space is
described which makes the search efficient and fast:

The vertices in search space are organized as a grid of n2

rows * n columns. Every vertex in a column is connected
to all the vertices in the next column through directed edges
except vertices in nth column. The vertices label shows the
chess cell position e.g. label 1 is used as a mapping to cell #
[0,0], label 2 is used as a mapping to cell # [0,1] and n2 is
used as a mapping to cell # [n-1, n-1]. For 8-queen problem
or 8*8 chess board positions, n will be 8, above gird will have
64*8 vertices, 64*64*7 edges and n2 i.e. 64 will map to cell
[7,7] at chess board.

In order to simplify the things, we will consider n equal
to 8 i.e. we will now talk about 8-queen problem, as from
the search space above it is evident that solution to 8-queen
problem is easily extendible to n-queen problem.

B. Constraints added in basic ACO

An ant can only move from left to right. Once a node is
selected at certain column, it can pick the next node to move
at, only from the column, next to the current column. Tour
ends over last column.

An ant during a tour visits only ‘n’ nodes (8 for 8-queen).
The label of nodes in the tour can not be the same. The node
in a tour represents a cell of chessboard where a queen is to
be placed. This restriction is added as if two nodes have same
labels then 02 queens will be placed in same cell which is

illegal. This essentially means that no two nodes in a tour will
be in the same row of the search space.

C. ACO parameters initialization and equations

Initially, all the edges are assigned with the same small
pheromone values. Arbitrary number of ants (swarm size) is
created as multi-agent system. Pheromone value is modified
on the basis of fitness value of a solution found by an ant.

Fitness Value: The fitness represents the number of positions
at chessboard that satisfy the game constraint i.e. queens if
placed on these positions will not kill any other queen at
chessboard. In case of 8-queen problem the possible range
of fitness values is 0-8.

Heuristic Value and Evaporation: The probability equation
is same as described above but the calculation of heuristic
value is changed. Now, in Equation (1), heuristic value is not
based on the distance between two vertices rather number of
contradictions if node j is selected as next node. Contradic-
tions represent the positions at chessboard where if queens are
placed will kill each other. Note that node j is a chess position
at which a queen will be placed. The probability equation for
selecting a node is:

pi,j =
[τi,j]α.[ηi,j]β∑

k∈S [τi,k]α.[ηi,k]β
(4)

Further, value of α and β is initialized with a random
number generated in range 0-2. The evaporation is done on
constant rate in our solution, decaying the pheromone value on
all the edges is done after the completion of a single iteration.
A single iteration is completed when all the ants complete
their tour. The evaporation is done by subtracting the current
pheromone value of an edge from a small constant.

V. SIMULATION RESULTS

The ACO is a probability based algorithm, so, the results
it would generate will be different if run multiple times on
the same instance of a problem. So, in order to generate
simulations results, we run it 50 times for 8-queen problem
and then take the average of the generated output. In Figure 3,
average fitness is drawn against maximum iterations allowed.
Note that, if we keep increasing the maximum iterations
allowed, we also get improving average fitness. In Figure 4,
relationship between average iterations taken and max iteration
is shown. We used two termination criterions; one application
is terminated if we get maximum fitness i.e. 8 in case of 8-
queen problem, second, if max allowed iterations are over. It’s
possible that we get the correct solution before the maximum
iterations are over. So, the average number of iterations taken,
shows the early convergence of the algorithm in certain tests
out of 50 total tests. Some parameters are kept constant as
swarm size (number of ants) = 10, alpha and beta = 1 for the
figures 3, 4 and 5.

Fig. 3. Avg Fitness vs Max Iterations

Fig. 4. Avg Iterations Taken vs Max Iterations

In Figure 5, perfect convergence is shown against maximum
iterations allowed. Perfect convergence mean that the correct
solution is found (fitness = 8). The behavior is self descriptive
that as long as we keep increasing the number of maximum
iterations allowed, the perfect convergence is also increased.

For Figure 6 and 7, parameters which are kept constant are
as maximum iterations allowed = 20, alpha and beta = 1. The
relationship between swarm size and average fitness gain is
depicted in figure 6, as expected if we keep increasing the
swarm size the average fitness gain will also become better.
In Figure 7, as shown prefect convergence also increases if
swarm size is increased.

For Figure 8 and 9, parameters which are kept constant are

Fig. 5. Perfect Convergence vs Max Iterations

Fig. 6. Avg Fitness vs Swarm Size

Fig. 7. Perfect Convergence vs Swarm Size

as maximum iterations allowed = 20, swarm size = 10 and
beta = 1. The average fitness gain and perfect convergence
are found best on alpha value 1.5 as shown in Figure 8 and 9,
respectively. Both of curves are declining after the alpha value
1.5, so, it may be considered as a saturation point if the value
of beta is 1.

For Figure 10 and 11, parameters which are kept constant
are as maximum iterations allowed = 20, swarm size = 10 and
alpha = 1. The average fitness gain and perfect convergence
are found best on beta value 1.5 as shown in Figure 10 and
11, respectively. Both of curves are declining after the beta
value 1.5, so, it may be considered as a saturation point if the
value of alpha is 1.

Fig. 8. Avg Fitness vs Alpha Value

Fig. 9. Perfect Convergence vs Alpha Value

Fig. 10. Avg Fitness vs Beta Value

VI. CONCLUSION

The solution we proposed is working efficiently for 8-queen
problem and it can easily be extended to large values of
‘n’ because of the simplistic model of the search space. A
solution is shown in Figure 12. We found our solution working
efficiently for 8-queen if parameters are set as swarm size = 15,
alpha = 1, beta = 1.5 or alpha = 1.5 and beta = 1. We conclude
that the ACO can provide better solution in reasonable amount
of time for combinatorial optimization problems and as future
work we will explore its applicability to some other such
problems.

Fig. 11. Perfect Convergence vs Beta Value

Fig. 12. A solution to 8-Queen Problem

ACKNOWLEDGMENT

The authors would like to acknowledge Higher Education
Commission (HEC) of Pakistan and Dr. Rauf Baig for their
continuous support. It would have been impossible to complete
this effort without their continuous support.

REFERENCES

[1] I. Martinjak and M. Golub, “Comparison of Heuristic Algorithms for
the N-Queen Problem”, Proceedings of the ITI 2007 29th Int. Conf. on
Information Technology Interfaces, June 25-28, 2007.

[2] K. D. Crawford, “Solving the N-Queens Problem Using Genetic Algo-
rithms”, In Proceedings ACM/SIGAPP Symposium on Applied Comput-
ing, Kansas City, 1992, pages 1039-1047.

[3] “Eight Queen Puzzle”, [Online] Available:
http://en.wikipedia.org/wiki/Eight queens puzzle [Accessed: July.
20, 2009].

[4] M. Dorigo. Optimization, “Learning and Natural Algorithms”, PhD thesis,
Politecnico di Milano, 1992.

[5] L.M. Gambardella and M. Dorigo, “Ant-Q: A Reinforcement Learning
Approach to the TSP”, In Proceedings of Twelfth International Confer-
ence on Machine Learning, 1995, pages 252-260.

[6] L.M. Gambardella and M. Dorigo, “Solving Symmetric and Asymmetric
TSPs by Ant Colonies”, In Proceedings of IEEE International Conference
on Evolutionary Computation, 1996, pages 622627.

[7] A. P. Engelbrecht, Computational Intelligence: An Introduction, Second
Edition, John Wiley & Sons, 2007.

[8] M. Gunes, U. Sorges and I. Bouazizi, “ARA - The Ant-Colony Based
Routing Algorithm for MANETs”, International Workshop on Ad Hoc
Networking (IWAHN 2002), Vancouver, British Columbia, Canada, Au-
gust 18-21, 2002.

